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LinkedIn by the numbers

120,000,000+ users (August 4, 2011)

2+ new user registrations per second

81+ Million monthly unique users* (Comscore)

2 Billion People Searches in 2010

7.1 Billion page views in Q2 2010

2+ Million companies with LinkedIn Company Pages

2+ M LinkedIn Groups
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Broad Range of Products
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User Profile
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Connections
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Communications
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Hiring Solutions
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Job Search
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Company Pages
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What do I mean by Analytics Products?
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People You May Know
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Profile Stats: WVMP
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Viewers of this profile also ...
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Skills
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InMaps
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Related Searches

Millions of Searches everyday

Help users to explore and refine their queries
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Analytics Products: Key Ideas

Recommendations

People You May Know, Related Searches, Viewers of 
this profile ...

Insight

Profile Stats: Who Viewed My Profile, Skills

Visualization

InMaps
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Analytics Products: Challenges

LinkedIn: largest professional network

120+ million members on LinkedIn

Billions of pageviews

Terabytes of data to process
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Connection Strength

Let’s build “Connection Strength”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production
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Connection Strength

How well do people know each other?

Connection Strength

Application: reorder updates to show updates 
from close connections
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Connection Strength

Alice

Bob Carol
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Connection Strength

Alice

Bob Carol

Triangle closing
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Connection Strength

Alice

Bob Carol

Triangle closing
Prob(Bob knows Carol) ~ the # of common connections
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Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();
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Pig Overview

Load: load data, specify format 

Store: store data, specify format

Foreach, Generate: Projections, similar to select  

Group by: group by column(s)

Join, Filter, Limit, Order, ...

User Defined Functions (UDFs)
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Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

36

connections = LOAD `connections` USING 
PigStorage();



Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

37

group_conn = GROUP connections BY 
source_id;



Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)
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pairs = FOREACH group_conn GENERATE 
generatePair(connections.dest_id) as (id1, id2);



Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

39

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn 
GENERATE flatten(group) as (source_id, dest_id), 
COUNT(pairs) as common_connections;



Connection Strength

Age

Company Overlap

School Overlap
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Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production
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Systems and Tools

Kafka (LinkedIn)

Hadoop (Apache)

Azkaban (LinkedIn)

Voldemort (LinkedIn)
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Data Cycle
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Systems and Tools

Kafka

publish-subscribe messaging system

transfer data from production to HDFS

Hadoop

Azkaban

Voldemort
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Systems and Tools

Kafka

Hadoop

Java MapReduce and Pig

process data

Azkaban

Voldemort
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Systems and Tools

Kafka

Hadoop

Azkaban

Hadoop workflow management tool

to manage hundreds of Hadoop jobs

Voldemort
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Systems and Tools

Kafka

Hadoop

Azkaban

Voldemort

Key-value store

store output of Hadoop jobs and serve in production
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Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production
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Hadoop MapReduce

Large-scale distributed data processing

Map phase: partition the problem in smaller 
steps

Reduce phase: aggregate the output of smaller 
steps

Allows parallelism and fault-tolerance
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Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production
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Our Workflow

Triangle 
Closing

Union

push-to-prod
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Our Workflow

Triangle 
Closing

Union

push-to-prod
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Age School Overlap

push-to-qa



Sample Workflow
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Azkaban Workflow Management

Dependency management
Regular Scheduling
Monitoring
Diverse jobs: Java, Pig, Clojure
Configuration/Parameters
Resource control/locking
Restart/Stop/Retry
Visualization
History
Logs
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Our Workflow

Triangle 
Closing

Union

push-to-prod
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Our Workflow

Triangle 
Closing

Union

push-to-prod
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Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production
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Voldemort

Large amount of data/Scalable

Quick lookup/low latency

Versioning and Rollback

Fault tolerance through replication

Read only

Offline index building
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Voldemort RO Store
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Related Searches

Millions of Searches everyday

Help users to explore and refine their queries
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How to build Related Searches?

Collaborative Filtering: searches done in the 
same session
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How to build Related Searches?

Searches correlated by results clicks
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Q1

Qn
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How to build Related Searches?

Searches with overlapping terms
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Jeff LinkedIn

LinkedIn CEO

Q1

Q2
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Sequencing the Startup DNA
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Done by Monica Rogati at 
LinkedIn



Sequencing the Startup DNA
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•Top majors: Entrepreneurship, Computer Engineering
•Bottom: Nursing, Administration



Sequencing the Startup DNA
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•Most founders age at first startup between 20 and 40



Sequencing the Startup DNA
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•Top regions: San Francisco, NYC 



Sequencing the Startup DNA
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•Top Business Schools: 
Stanford, Harvard, MIT Sloan
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SNA Team

Thanks to SNA Team at LinkedIn

http://sna-projects.com

We are hiring!
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Questions?
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