
Social Network Analysis at 
Linkedin

Mitul Tiwari
Search, Network, and Analytics (SNA)

LinkedIn

1



Who am I?

2



Outline

About Me

About LinkedIn

Analytics products at LinkedIn

Fun Facts: Sequencing the Startup DNA

3



LinkedIn by the numbers

120,000,000+ users (August 4, 2011)

2+ new user registrations per second

81+ Million monthly unique users* (Comscore)

2 Billion People Searches in 2010

7.1 Billion page views in Q2 2010

2+ Million companies with LinkedIn Company Pages

2+ M LinkedIn Groups

4



Broad Range of Products

5



User Profile

6



Connections

7



Communications

8

10 

Communications 



Hiring Solutions

9



Job Search

10



Company Pages

11



Outline

About Me

About LinkedIn

Analytics products at LinkedIn

Fun Facts: Sequencing the Startup DNA

12



What do I mean by Analytics Products?

13



People You May Know

14



Profile Stats: WVMP

15



Viewers of this profile also ...

16



Skills

17



InMaps

18



Related Searches

Millions of Searches everyday

Help users to explore and refine their queries

19



Analytics Products: Key Ideas

Recommendations

People You May Know, Related Searches, Viewers of 
this profile ...

Insight

Profile Stats: Who Viewed My Profile, Skills

Visualization

InMaps
20



Analytics Products: Challenges

LinkedIn: largest professional network

120+ million members on LinkedIn

Billions of pageviews

Terabytes of data to process

21



Outline

Analytics products at LinkedIn

Deep Dive - Connection Strength

Deep Dive - Related Searches

Fun Facts: Sequencing the Startup DNA

22



Connection Strength

Let’s build “Connection Strength”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production

23



Connection Strength

How well do people know each other?

Connection Strength

Application: reorder updates to show updates 
from close connections

24



Connection Strength

Alice

Bob Carol

25

How well do 
people know each 

other?



Connection Strength

Alice

Bob Carol

26

How well do 
people know each 

other?



Connection Strength

Alice

Bob Carol

Triangle closing

27

How well do 
people know each 

other?



Connection Strength

Alice

Bob Carol

Triangle closing
Prob(Bob knows Carol) ~ the # of common connections

28

How well do 
people know each 

other?



Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

29



Pig Overview

Load: load data, specify format 

Store: store data, specify format

Foreach, Generate: Projections, similar to select  

Group by: group by column(s)

Join, Filter, Limit, Order, ...

User Defined Functions (UDFs)

30



Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

31



Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

32



Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

33



Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

34



Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

35



Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

36

connections = LOAD `connections` USING 
PigStorage();



Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

37

group_conn = GROUP connections BY 
source_id;



Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

38

pairs = FOREACH group_conn GENERATE 
generatePair(connections.dest_id) as (id1, id2);



Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

39

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn 
GENERATE flatten(group) as (source_id, dest_id), 
COUNT(pairs) as common_connections;



Connection Strength

Age

Company Overlap

School Overlap

40



Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production

41



Systems and Tools

Kafka (LinkedIn)

Hadoop (Apache)

Azkaban (LinkedIn)

Voldemort (LinkedIn)

42



Data Cycle

43



Systems and Tools

Kafka

publish-subscribe messaging system

transfer data from production to HDFS

Hadoop

Azkaban

Voldemort

44



Systems and Tools

Kafka

Hadoop

Java MapReduce and Pig

process data

Azkaban

Voldemort

45



Systems and Tools

Kafka

Hadoop

Azkaban

Hadoop workflow management tool

to manage hundreds of Hadoop jobs

Voldemort

46



Systems and Tools

Kafka

Hadoop

Azkaban

Voldemort

Key-value store

store output of Hadoop jobs and serve in production

47



Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production

48



Hadoop MapReduce

Large-scale distributed data processing

Map phase: partition the problem in smaller 
steps

Reduce phase: aggregate the output of smaller 
steps

Allows parallelism and fault-tolerance

49



Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production

50



Our Workflow

Triangle 
Closing

Union

push-to-prod

51

Age School Overlap



Our Workflow

Triangle 
Closing

Union

push-to-prod

52

Age School Overlap

push-to-qa



Sample Workflow

53



Azkaban Workflow Management

Dependency management
Regular Scheduling
Monitoring
Diverse jobs: Java, Pig, Clojure
Configuration/Parameters
Resource control/locking
Restart/Stop/Retry
Visualization
History
Logs

54



Our Workflow

Triangle 
Closing

Union

push-to-prod

55

Age School Overlap



Our Workflow

Triangle 
Closing

Union

push-to-prod

56

Age School Overlap



Related Searches

Let’s build “Related Searches”

Systems and Tools we use

Hadoop MapReduce

Managing workflow

Serving data in production

57



Voldemort

Large amount of data/Scalable

Quick lookup/low latency

Versioning and Rollback

Fault tolerance through replication

Read only

Offline index building

58



Voldemort RO Store

59



Outline

Analytics products at LinkedIn

Deep Dive - Connection Strength

Deep Dive - Related Searches

Fun Facts: Sequencing the Startup DNA

60



Related Searches

Millions of Searches everyday

Help users to explore and refine their queries

61



How to build Related Searches?

Collaborative Filtering: searches done in the 
same session

62

Q1 Q2 Q3 Q4

Time



How to build Related Searches?

Searches correlated by results clicks

63

Q1

Qn

R1

Rm



How to build Related Searches?

Searches with overlapping terms

64

Jeff LinkedIn

LinkedIn CEO

Q1

Q2



Outline

Analytics products at LinkedIn

Deep Dive - Connection Strength

Deep Dive - Related Searches

Fun Facts: Sequencing the Startup DNA

65



Sequencing the Startup DNA

66

Done by Monica Rogati at 
LinkedIn



Sequencing the Startup DNA

67

•Top majors: Entrepreneurship, Computer Engineering
•Bottom: Nursing, Administration



Sequencing the Startup DNA

68

•Most founders age at first startup between 20 and 40



Sequencing the Startup DNA

69

•Top regions: San Francisco, NYC 



Sequencing the Startup DNA

70

•Top Business Schools: 
Stanford, Harvard, MIT Sloan



Things Covered

Analytics products at LinkedIn

Deep Dive - Connection Strength

Deep Dive - Related Searches

Fun Facts: Sequencing the Startup DNA

71



SNA Team

Thanks to SNA Team at LinkedIn

http://sna-projects.com

We are hiring!

72

http://sna-projects.com
http://sna-projects.com


Questions?

73


