
Technical report

TapeAgents: a Holistic Framework for Agent Development
and Optimization

Core contributors1:
Dzmitry Bahdanau†,* Nicolas Gontier† Gabriel Huang†

Ehsan Kamalloo† Rafael Pardinas† Alex Piché†

Torsten Scholak† Oleh Shliazhko†,* Jordan Prince Tremblay†,*

Contributors1:
Karam Ghanem2 Soham Parikh‡ Mitul Tiwari2 Quaizar Vohra‡

†ServiceNow Research ‡ServiceNow

Corresponding authors (*): {dzmitry.bahdanau,oleh.shliazhko,jordanprince.t}@servicenow.com

Abstract

We present TapeAgents,3 an agent framework built around a granular, structured log (tape)
of the agent session that also plays the role of the session’s resumable state. In TapeAgents
we leverage tapes to facilitate all stages of the LLM Agent development lifecycle. The agent
reasons by processing the tape and the LLM output to produce new thought and action
steps and append them to the tape. The environment then reacts to the agent’s actions
by likewise appending observation steps to the tape. By virtue of this tape-centred design,
TapeAgents can provide AI practitioners with holistic end-to-end support. At the devel-
opment stage, tapes facilitate session persistence, agent auditing, and step-by-step debug-
ging. Post-deployment, one can reuse tapes for evaluation, fine-tuning, and prompt-tuning;
crucially, one can adapt tapes from other agents or use revised historical tapes. In this re-
port, we explain the TapeAgents design in detail. We demonstrate possible applications of
TapeAgents with several concrete examples of building monolithic agents and multi-agent
teams, of optimizing agent prompts and finetuning the agent’s LLM. We present tooling
prototypes and report a case study where we use TapeAgents to finetune a Llama-3.1-8B
form-filling assistant to perform as well as GPT-4o while being orders of magnitude cheaper.
Lastly, our comparative analysis shows that TapeAgents’s advantages over prior frameworks
stem from our novel design of the LLM agent as a resumable, modular state machine with
a structured configuration, that generates granular, structured logs and that can transform
these logs into training text — a unique combination of features absent in previous work.

Manuscript version: October 16, 2024

1 Introduction

In the coming years, we will likely witness widespread deployments of Large Language Model (LLM) Agents:
complex user-facing and background workflows that interleave traditional programming with LLM-based
intelligence. This big paradigm shift in software architecture will greatly challenge AI practitioners who put
LLM agents to work. The agent developers and applied scientists will have to troubleshoot and improve
systems that operate in non-stationary environments and deal with non-deterministic LLM behavior and
the LLM’s often fragile instruction following. For the LLM agent adoption to go smoothly and lead to
good outcomes, it is crucial that agent developers and applied scientists operate in appropriate frameworks
that enable effective tooling. Developers and researchers have recently proposed many agentic frameworks

1Authors are in alphabetical order.
2Work performed while at ServiceNow
3https://github.com/ServiceNow/TapeAgents

1

https://github.com/ServiceNow/TapeAgents

Technical report

that support practitioners at different stages of the agent development lifecycle. Several frameworks, like
LangChain (Chase, 2022), CrewAI and AutoGen (Wu et al., 2024a), help developers quickly build an agent
using low-code paradigms, such as prompt-chaining or multi-agent teams. Others, like LangGraph (Chase,
2023), offer low-level support in achieving resumability, asynchronous execution, concurrency and instru-
mentation. At the other end of the spectrum are frameworks built by researchers like DSPy (Khattab et al.,
2023a), TextGrad (Yuksekgonul et al., 2024) and Agents (Zhou et al., 2023a), that usually focus on data-
driven optimization of the agent performance with model finetuning and prompt-tuning algorithms, while
putting less emphasis on the needs of the agent developers.

In this technical report, we present TapeAgents — a new holistic agent framework that supports practition-
ers at both the agent development and data-driven agent optimization stages. We achieve both objectives by
building the framework around a comprehensive, structured, granular, semantic-level log of the agent session
that we call a tape, a term that also gives the framework its name (see Figure 1 for an illustration). The
agents in TapeAgents read the tape to make the LLM prompt and then process the LLM output to append
new steps to the tape: thought steps to express reasoning and action steps to request external inputs. The
environment responds to the action steps at the end of the tape with observation steps that it likewise
appends to the tape. The orchestrator invokes the agent and the environment in an alternate fashion and
maintains full control over their interactions. By design, the orchestrator can resume from any intermediate
tape, which enables session persistence and step-by-step debugging, both key developer requirements for an
agent framework. For data-driven algorithms, tapes record the attribution of each step to the respective part
of the agent configuration, which facilitates training, data generation and automatic prompt-tuning. Cru-
cially, for both manual debugging and algorithms, agents can reuse lightly adapted tapes from other agents
and revise their own tapes. This allows practitioners to maximally benefit from imperfect historical tapes by
earlier versions of the agent, both for evaluating the newer versions and for improving them algorithmically.
Last but not least, agents stream their intermediate events to the orchestrator to enable delightful interactive
experiences.

We invite the reader to start their TapeAgents journey with the technical presentation of the framework in
Section 2. There, we cover the details of agent architecture, agent-environment orchestration, tape content
and structure. Section 3 describes three low-code agent-building framework prototypes on top of TapeAgents:
one for monolithic agents, another for multi-agent teams and the third one with easy-to-tune function-like
prompts. The same section also covers early versions of our Studio toolsuite for development and debugging
and our Optimize toolsuite for agent optimization. In Section 4, we present diverse examples of building and
optimizing agents using TapeAgents framework and tooling. Section 5 presents a deeper case study of a key
practical TapeAgents use case: optimizing the quality of a cost-effective conversational assistant using tapes
from an expensive multi-node Teacher agent. After presenting the framework and the examples we offer the
reader a detailed comparison of TapeAgents with prior work in Section 6. Lastly, Section 7 discusses possible
extensions and applications of TapeAgents.

2 TapeAgents: foundations

Our TapeAgents framework proposes an agent-building paradigm that facilitates all stages of the AI Agent
development lifecycle. This section presents the framework in a detailed bottom-up approach. First, we
introduce the building blocks: the nodes, the agents, and the environment. Then, we explore how these
parts can be composed and orchestrated to build a tape-centered system. In this section, we also describe
the tape structure and metadata.

2.1 Nodes and Steps

As outlined in Figure 1, in TapeAgents, one builds the agent from nodes: the basic atoms of intelligence.
A node describes one LLM call and the classical symbolic processing of the call’s output. The agent will
dynamically determine which node to run next based on the tape. Nodes generate new tape entries that we
call steps: basic atoms of the agent’s memory. Examples of what an agent can do in a step include making
a long-term plan, reasoning about how to fulfill the plan or how to use a tool, requesting a tool call. Among
these examples, the last one is an action step as it requests interaction with or has an impact on the agent’s

2

Technical report

Studio

Optimize

RLHFFine- tuning
Prompt
tuning Agent C Agent D

Tape

Agent B

Monitor

delegate()delegate()

Orchestrator

Evaluate

Agent A

delegate()

agent.run()

Active Node

...

Select
Node

Thoughts,
Actions

Tape

env.react()

Node 1

Node N

...

Environment

Interrupt & Resume

Agent
Optimization

Human

APIs

RAG

Web

Synthetic Data
Generation

Code Execution

Tape Reuse

Observations

Tape

Prompt
Templates

LLM
Prompt

Output

Figure 1: TapeAgents at a glance. The orchestrator alternates between running the agent and the environment
interacting with each other via adding steps to the tape: a comprehensive, replayable semantic-level log. Agents are
composed of basic reasoning units that we call nodes. The agents are organized in hierarchical teams, with one agent
being active at a time. The tape and the agent configurations are highly structured and linked with rich metadata
that supports the implementation of broadly usable developer tools (collectively called Studio) and optimization
methods (collectively called Optimize).

environment. The first three examples are thoughts: the agent’s inner reasoning steps. The remaining step
type in TapeAgents is the observations that the agent receives from its environment in response to the
agent’s actions. The reader can find an example tape with color-coded actions, thoughts and observations
in Figure 3. In TapeAgents we often define a tape type by specifying what specific actions, thoughts, and
observations classes it can contain, though all such tapes are currently merely aliases for the one and only
tapeagents.core.Tape class.

A typical node uses an LLM to generate tape steps. One defines this process with two node methods:
make_prompt and generate_steps. First, the node constructs the LLM prompt through its make_prompt
method that has the following Python signature:

def make_prompt(self, agent, tape) -> Prompt (1)

Some nodes perform only the conventional non-neural computation, like taking a branching decision. These
nodes can use the default make_prompt implementation that produces a null prompt. Note that the node
does not call the LLM directly but only makes a prompt. This is a deliberate design decision to keep all
node methods pure functions, i.e. deterministic functions with no side effects.

Second, the node generates steps based on the stream of tokens that it receives from the last LLM call. One
defines the step-generating behavior of a new node class in its generate_steps method:

def generate_steps(self, agent, tape, llm_stream) -> Generator[Step | PartialStep] (2)

If a node produced a null prompt in its make_prompt method above, the llm_stream will also be null. All
nodes must generate Step objects; some can also parse the LLM token stream incrementally to produce
partial steps which the agent will pass through to the application without adding them to the tape. Figure 2

3

Technical report

shows how the agent runs one node and adds the resulting steps to the tape, along with the relationship
between make_prompt and generate_steps.

By default, the agent calls its nodes sequentially and appends the steps they create to the tape that the agent
is asked to continue. A code example of a node implementing these two methods can be seen in Appendix A
under class SearchAgentMainNode.

2.1.1 Nodes That Can Make Training Data

Some nodes also implement the reverse direction — make the LLM output that would be required to produce
the steps at a given index in the tape. The respective node method is

def make_llm_output(self, agent, tape, index) -> LLMOutput (3)

This method is crucial for making fine-tuning data.

2.2 Agents
agent.delegate()

TapeViewStack.compute()

View

subagent.select_node()

node.make_prompt()

LLM

node.generate_steps()

Tape

Steps

LLMStream

Prompt

Figure 2: A reasoning loop of an agent in
TapeAgents. The root agent delegates to a
subagent, the subagent selects the node, the
node makes the prompt. The subagent calls
the LLM with the prompt and lets the node
process the resulting stream of tokens (LLM-
Stream) that the root agent will then append
to the tape.

Like nodes, a TapeAgent agent generates steps and makes a
new tape by appending the generated steps to the input tape.
Specifically, agent.run(tape) runs an iterative reasoning loop
that, at every iteration, selects a node, lets it make the prompt
and generates the next steps (see Figure 2). By default, the
agent will run its nodes sequentially (see next paragraph for
more details). The loop continues as long as the nodes only
generate thoughts. When a node produces an action, the agent
stops and returns a new tape with the generated steps from
all iterations appended to it. More precisely, agent.run(tape)
returns an AgentStream object for streaming events like partial
tapes and steps, but the final new agent tape is easy to extract
from the stream object using AgentStream.get_final_tape()
method.

An agent may have subagents for whom this agent is the
manager. The subagents can have further subagents, which
gives rise to a hierarchical agent organization with a single
manager-free root agent on top. Given an input tape, the root
agent determines the next active organization member to which
delegate the generation of next steps. By default, the root
agent makes the delegation decision by looking at the special
Call and Respond thoughts. When an agent A wants the root
to delegate to an agent B, A will append Call(agent_name="B",
content=...) thought to the tape with an optional free-form
message in the content field. When B responds by appending Respond(content=...), A becomes active
again. Note that both Call and Respond will affect the delegation logic at the next agent iteration. To sum
up the delegation description, the root delegates to the agent that was called last and has not responded yet.
See Figure 3 for an example of communication between a financial analyst agent and its web search helper.
See Appendix A for a listing of the complete code for this example.

2.2.1 Tape Views

In many cases, a middle-level agent A will make its prompts only using a subset of the tape’s steps starting
from A’s last Call message and excluding the inner steps of the subagents that A called. To keep track of
the steps each subagent can see, and to select the active agent and node, most agents compute the tape
view stack from the tape and delegate to the agent whose view is at the top. For each agent that has not
responded yet, the view contains the steps that this agent can see and the next node that the agent should

4

Technical report

run when it becomes active (see Figure 3). To track the next node, the TapeViewStack.compute function
increments the top view’s next node pointer when it sees (from step metadata) that the current node has
started running (see more on step metadata in Section 2.5). Exceptionally when TapeViewStack.compute
encounters a special SetNextNode(next_node=...) thought, it changes the next node pointer to the value
that the thought carries. A common use-case for SetNextNode is to implement looping within an agent.

A reader familiar with how Python interpreter works can find agents similar to Python functions, node
similar to lines of Python code, steps similar to Python bytecode instructions, the tape view stack similar
to the Python call stack and tape views similar to Python frames.

2.2.2 Optimizable Agents

Agent optimization algorithms tune agent prompts (Khattab et al., 2023a; Pryzant et al., 2023; Zhou et al.,
2023b) or alter agent structure (Hu et al., 2024) in order to maximize the agent’s performance. To make such
algorithms applicable to as many agents as possible, we standardize the structure of the agent configuration.
We achieve this by making tapeagents.agent.Agent a Pydantic model4 with the following mandatory fields:
.llms for the LLM configurations, .templates for the prompt templates, .nodes for the nodes, and .subagents
for the subagents.

Agents can also make training data for the LLM that they use. An agent’s agent.make_training_text(tape)
method reconstructs the LLM calls from a given tape, validates the reconstruction by replaying the step gener-
ation and returns training text characters. Internally, agent.make_training_text uses node.make_llm_output
method introduced in Section 2.1.1; hence all nodes must implement this method for the agent to be trainable.

2.3 Environment

Just like nodes and agents, the environment in TapeAgents makes a new tape by adding steps to an existing
tape. The main method of an environment object is:

def react(self, tape) -> Tape. (4)

The environment.react searches for the unfulfilled actions in the tape and adds the corresponding observa-
tion steps to the tape. Unlike nodes and agents, the environment may be non-deterministic and have side
effects. We encourage agent developers to put all the deterministic and pure-function aspects of the system
in the agent part, isolating only non-deterministic, computationally heavy or transactional aspects in the
environment part.

2.4 Orchestration

To run a TapeAgent-based agentic application, one must alternate between running the root agent (which
handles the delegation internally) and calling the environment to react to the agent’s actions (see Figure 1).
While we provide a default tapeagents.orchestrator.main_loop orchestrator for this purpose, we expect
many application developers to build their custom orchestrators to closely control the agent-environment
communication and ensure safety or enhance iteration logic.

2.4.1 Resumption and Replay

We designed TapeAgents with resumption and replay as key priorities. To resume, one can just restart
the orchestration from an intermediate tape. For testing purposes, one can run an agent with replayed
observations and LLM outputs and verify that this process leads to the same tape or print the diff otherwise.
We found the replay tests to be incredibly helpful in our development work. When applicable, one can also
replay the tape’s observations (or even some of the agent’s steps) in a new session to evaluate a new agent,
though the old observations can be implausible if the new tape deviates too much from the old one.

4Pydantic models, from the Python pydantic package, provide robust data validation and parsing, ensuring that input
data is properly structured and typed. This not only improves reliability by catching errors early but also simplifies code by
automatically handling serialization, deserialization, and type conversions.

5

Technical report

2.5 Tape Metadata and LLM Call Database

Regardless of the orchestration method, the implementations of agent.run() and environment.react() ensure
that the tape and its steps contain rich metadata, including these fields:

• tape.metadata.author: which agent or environment made this tape; either by authoring it, or by
adding steps to it, or by making a revision of another tape.

• tape.metadata.parent_id: the ID of the parent tape of which the current tape is a continuation
(when applicable).

• step.metadata.agent: the hierarchical name of the agent that generated the step.

• step.metadata.node: the name of the node that generated the step.

• step.metadata.prompt_id: the identifier (id) of the prompt that led to the generation of this step,
see the explanation below.

When an agent runs a node, the node generates a unique ID for the prompt that it builds at this iteration.
The prompt ID thus serves as the unique identifier of a node execution, i.e., of a specific iteration when the
node was active. The ID also links the step to the LLM call from the node run so we can trace the origin of
each step down to the specific prompt and LLM output. We store the prompt and the output for all LLM
calls in an SQLite database. One can view LLM calls as an effective part of the tape in that they are always
easily accessible; we don’t include them in the tape to keep the latter lightweight.

The metadata is crucial for building the tooling and the algorithms that empower the agent developer.
Figure 3 shows a visualization of some metadata fields.

3 TapeAgents: tooling

The TapeAgents foundation that we covered in Section 2 allows the creation of a wide range of reusable
agent components, tooling and learning algorithms. What the right building blocks and tooling are often
depends on the application area. In our initial release, we provide several prototypes to jump-start future
open-source collaborations.

3.1 Low-code Mini-Frameworks

Building agents requires implementing many similar template rendering (node.make_prompt) and text parsing
(node.generate_steps) routines. As a part of TapeAgents, we provide three examples of low-code mini-
frameworks for building agents by composing and configuring off-the-shelf components:

1. MonoAgent exemplifies the most straightforward way to implement a monolithic agent: make a
comprehensive prompt from all the data from the tape and the possible step schemas, then parse the
LLM output using the schemas. One creates a MonoAgent from MonoNode nodes whose prompts
are the same except for the final user message instruction. A MonoAgent also requires the agent
developer to provide Pydantic models for all possible steps that the agent can generate.

2. TeamAgent shows how an AutoGen-style agent team can work in one tape. One can create three
different kinds of team agents: (a) an initiator that send the first Call message, (b) a manager that
chooses the next active agent, (c) a worker agent that responds using its system prompt.

3. LLMFunction demonstrates how one can build agents using function-style prompt templates, akin
to DSPy signatures. These prompt templates are particularly easy to optimize by adding demon-
strations.

6

Technical report

Analyst

Search Agent

0: PlanNode

1: ActNode

0: MainNode

Tape

agent_name:
analyst
next_node: 1
steps:

agent_name:
search_agent
next_node: 0
steps:

agent_name:
analyst
next_node: 0
steps:

topbottom
TapeVi ewStack (step 16) TapeVi ewStack (step 19)

Figure 3: A multi-agent tree structure (left) and a tape resulting from their work (middle) with the TapeViewStack
at specific steps (right). At step 16 the stack’s top view is the SearchAgent’s tape view. At step 19, only the Analyst’s
view exists. Note how the Analyst’s view does not include the Search Agent’s steps except for its response. Steps
are color-coded: yellow for communication thoughts, purple for internal agent thoughts, blue for actions, and green
for observations. The step’s author is indicated in grey using the “agent.node” format. Appendix A shows the code
implementation that produced this tape.

7

Technical report

We include the mini-frameworks mostly for demonstration purposes, as it is hard to offer a high-level program-
ming paradigm without a good knowledge of the intended application domain. The TapeAgents paradigm
makes it easy to build such mini-frameworks thanks to the agent’s double compositionality (agents and
nodes).

3.2 Tooling

In TapeAgents, the agent configuration and the tape are highly structured and linked with metadata. This
allows us to offer developer tooling for a broad range of possible TapeAgents. In the initial release, we include
several app prototypes. We offer TapeAgents Studio (see Figure 8 in Appendix D), an app to interact with
the agent and its tape, Tape Browser (Figure 9 in Appendix D), an app to inspect a batch of tapes, and
Tape Diff (Figure 10 in Appendix D), which compares two batches of tape. Furthermore, for agent optimiza-
tion, we provide algorithms for auto-prompting, LLM fine-tuning, and a modular Reinforcement Learning
orchestrator. The finetuning component uses Accelerate (Gugger et al., 2022) and DeepSpeed (Rasley et al.,
2020) libraries and supports tuning resumption, experiment tracking, reproducibility, LoRA tuning, and dis-
tributed training. The above apps and algorithms represent the first steps towards the fully fledged Studio
and Optimize modules that we envision in Figure 1.

4 Examples

In an initial set of examples, we demonstrate agents that represent different agent-building paradigms, as
well case-studies of using different agent optimization methods.

4.1 Financial Analyst and Their Web Search Helper

To offer an example with the maximal educational value, we have implemented a user-facing financial analyst
agent that can delegate searching the web to its subagent. We show the structure of the analyst agent and
an example tape in Figure 3. Our introductory hands-on notebook5 takes the reader through a journey from
TapeAgents basic concepts to building this agent.

For illustrative purposes, we implemented the nodes in this example from scratch, without using mini-
frameworks from Section 3.1. We offered the analyst agent an environment with several tools: one to get
the company ticker, another to download stock data, as well as several tools to search and browse the
web. We inform the analyst and their web search helper of the tools that they can use by including their
tools’ schemas in the prompts that the respective agent’s nodes make. The agent operates on a tape type
called DialogTape, which can only contain two kinds of actions: ToolCalls to call one or more tools and
AssistantStep to respond to the user. The agent uses the same ToolCalls step with different content to
call different tools. This is the use we intend for DialogTape: quick agent prototyping without declaring
usecase-specific step schemas, though we believe most TapeAgents users will find it useful to declare their
own action and thought types.

4.2 Open-domain Question Answering and Web Browsing With Monolithic Agents

To validate TapeAgents quantitatively, we build two agents that target existing benchmarks. The first one
is a question-answering (QA) agent that targets the GAIA benchmark (Mialon et al., 2024). The QA agent
can search the web, run Python code, read multiple file types. To meet the GAIA evaluation requirements,
we prompt the agent to output the precise short answer only. We build the QA agent from MonoNode nodes,
with two planning nodes and one acting node in which the agent loops (see Figure 4). Table 1 shows that
the agent performs quite well for such a simple agent. Our agent beats the more complicated FRIDAY
agent (Wu et al., 2024c) which incorporates Executor and Critic modules and also working memory. For
comparison mplementing our agent only requires gathering the tools, declaring corresponding action steps
(like ReadDocumentAction and UseCalculatorAction) and declaring usecase-specific thoughts for reasoning
(like ListOfFactsThought and NewFactThought). There is a lot of room for further improvement of the agent,

5https://github.com/ServiceNow/TapeAgents/blob/main/intro.ipynb

8

https://github.com/ServiceNow/TapeAgents/blob/main/intro.ipynb

Technical report

Figure 4: Agent structures for GAIA, WorkArena and Agentic RAG experiments (see sections 4.2 and 4.5 for
details).

Table 1: GAIA Agent evaluation results.

Framework & Model Val accuracy, % Test accuracy, %
Trase Agent v0.2, Gemini (SOTA) 47.3 39.5
HuggingFace Agents, GPT-4o 44.2 33.3
TapeAgents, GPT-4o 33.9 27.6
FRIDAY, GPT-4-turbo 34.5 24.3
TapeAgents, GPT-4o-mini 25.5 16.6
GPT-4 + manually selected plugins 14.6 14.6

starting from the obviously beneficial majority voting ensembling of runs and up to the multiagents, self-critic
techniques, search over the tree of thoughts, etc.

We used a similar approach to build a web-browsing agent that targets the WorkArena benchmark (Drouin
et al., 2024). The BrowserGym environment has been used for the evaluation, with a convenient interface to
the real browser. We declared action classes for different browser actions like HoverAction and PressAction
and so on. Figure 4 illustrates the exact agent structure, which is following ReAct (Yao et al., 2023)+Planning
approach, with goal-setting, reflection and acting nodes. We benchmark our web agent and find that it
performs competitively (see Table 2).

4.3 Data Science With a Team of Agents

To demonstrate that TapeAgents natively supports the multi-agent paradigm, we implement a “data science”
agent team that consists of the Requestor, Manager, Software Engineer, Code Executor and Asset Reviewer
agent. Figure 7 (in Appendix C) shows the team in action as it builds a stock price comparison plot. We
drew inspiration from the popular AutoGen framework for the multi-agent communication pattern in this
example. Benefits of the TapeAgents implementation of this agent team include that one can easily resume
the team from an intermediate tape or use tapes to optimize the entire agent organization algorithmically.

Table 2: Workarena Agent evaluation result on Workarena L1 tasks.

Framework & Model Accuracy, %
TapeAgents GPT-4o 44.2
Agentlab GPT-4o 42.7
TapeAgents GPT-4o-mini 29.1
Agentlab GPT-4o-mini 23.0

9

Technical report

4.4 Finetuning a Cheap Math Agent

We test-drive TapeAgents fine-tuning component with a distillation example. We train a LLAMA3.1-8B-
based math agent using tapes by its teacher counterpart with LLAMA3.1-70B under the hood. We equip
each agent with a reasoning node and run the environment with a calculator tool. After finetuning on 3,000
samples from 1,000 teacher tapes, the student performance rises significantly from 66.2% to 77.5%, though
the teacher’s performance, at 93.1%, remains much higher still.

4.5 Prompt-Tuning for Agentic RAG

In our last example, we show how the tape, the agent configuration and the metadata linking them, can serve
as a medium to implement data-driven agent optimization algorithms. In this example, we use LLMFunction
prompt templates (see examples in Appendix B) that describe the intended behavior of a transformation that
the LLM should perform, including the instruction, the input/output format, and optionally, a few demon-
strations. We designed LLMFunction to make it possible to implement DSPy-like algorithms in TapeAgents.
Below we describe how we used TapeAgents components to closely reimplement the DSPy introductory
notebook.

We compose a Retrieval-Augmented Generation (RAG) agent. Figure 4 illustrates the structure where the
agent performs two rounds of query generation and Wikipedia retrieval and then produces a short factual
answer. We build this agent mostly from LLMFunctionNode nodes that describe how the input fields in their
respective LLMFunction templates should be filled with the steps from the tape. The only different kind of a
node is a null-prompt node that deduplicates the retrieved paragraphs. We tune the prompts of the resulting
5-node agent by adding demonstrations to the function prompt templates. We obtain demonstrations by
running the agent on training examples from HotPotQA and filtering the tapes with the wrong answer or
duplicate queries. In this setting, prompt-tuning leads to modest gains but significant gains in retrieval
accuracy, raising it from 50% to 56%. The optimized agent is still a TapeAgent that can be resumed from
any intermediate tape, unlike a free-form Python program that uses DSPy. Notably, the implementation of
the actual demonstration selection algorithm took just 12 lines of code (see Appendix B), highlighting how
the TapeAgent structures and metadata facilitate algorithm implementation.

5 Case Study: Building a Cost-Effective Enterprise Form-Filling Assistant

A key use case of TapeAgents is optimizing LLM Agents to offer great quality services at a fraction of the
cost. In this section, we present a fleshed-out example of how these goals can be achieved for a conversational
assistant that can help fill a request form and submit the request.

5.1 Problem Setting

Employees in large enterprises often fill forms to request resources, assistance or access. A conversational
assistant can make the form-filling experience smoother by guiding its user to the right form, by accepting
the user’s free-form inputs, and by answering the questions that the user may have in the process. For a
great experience, the assistant must also gracefully handle the “unhappy-path” situations, such as when the
user’s ask is impossible to fulfill or when the assistant cannot answer the user’s question. In this case study,
we show one can use TapeAgents to train a cost-effective assistant that scores high according to a formal
metric of user experience that we call the GREADTH score. GREADTH stands for Grounded, REsponsive,
Accurate, Disciplined, Transparent, and Helpful. We will explain these metrics in Section 5.2.

For simplicity, we consider building a restricted assistant:

• The assistant should answer questions solely based on the form documentation; it does not have to
retrieve any additional documents.

• The assistant can only help with one form at a time.

10

Technical report

• At the start of the conversation the assistant converses with the user to guide them to the correct
form.

• After the form is chosen, the assistant will help the user fill out the form correctly. The agent will
not allow the user to switch to a different form after this point.

• During the form-filling process, the assistant maintains the field values that the user has provided
so far.

• The interaction ends with either the form submission or the agent exiting the conversation after the
user’s confirmation.

The resulting form-filling setup is reminiscent of the Task-Oriented Dialogue setting that has been widely
discussed in the literature (Rastogi et al., 2020; Budzianowski et al., 2018). Following this body of work, we
will refer to form fields as slots.

5.2 Evaluation Criteria: GREADTH Experience

Despite the apparent simplicity of the form-filling setup, it can be non-trivial to develop a form-filler assistant
that balances an excellent conversational experience with low hallucination rate and reasonable cost. To
balance these desiderata, one must first define them in a measurable way. In our case study, we design our
assistant to have maximum GREADTH: Grounded, REsponsive, Accurate, Disciplined, Transparent,
and Helpful. We define these aspects as follows:

• Everything a Grounded assistant says must be fully supported by the form documentation, the
conversation history and the grounding statement. The latter defines the assistant’s identity and
purpose and constrains the assistant to form-filling. Small talk is considered ungrounded.

• A Helpful assistant must actively take the conversation forward by asking for the user’s intent,
requesting the next slot to fill, or asking for confirmation before making the request once all slots
have been filled. It should also (a) provide all relevant information regarding a slot when asking for it
(default value, allowed values, optionality), (b) answer any user question if the form documentation
provides the relevant information, (c) exit the conversation at any time if the user desires so.

• An Accurate assistant must correctly identify the user’s intent and import the relevant form docu-
mentation, fill the slots correctly based on user messages, update the slots if the user changes their
mind, or skip the slots if relevant.

• A Transparent assistant acknowledges all changes made to the partially filled form. This includes
slot-filling or skipping slots that are optional or have a default value. The summary of slots changes
can be concise, yet the user must be able to understand how the slots were affected. While in a
mixed modality interaction the user may visually see the form changes, in a purely voice interaction
such as talking over the phone the transparent behavior is essential.

• A Disciplined assistant must follow its planning thoughts, such as requesting a slot, asking for confir-
mation, answering a question, rejecting incorrect slot values (as defined by the form documentation),
or rejecting an invalid ask.

• We require the assistant to be REsponsive to address a common experience issue with AI assistants:
the robotic and opaque behavior when the user goes off the expected conversational path. We wish
that AI assistant infers and acknowledges what the user had in mind, while explaining that their
request or question is not possible. In particular, we want to cover the following scenarios:

– if the user tries to fill a slot with an invalid value, the assistant should acknowledge the value
and respond that it is invalid;

– if the user offers information that looks like a value for a nonexistent but plausible slot, the
assistant should acknowledge the value and the inferred name of the slot and respond that such
slots is not available in this form;

11

Technical report

– if at the form-filling stage the user’s ask looks like a request for another form, the agent should
acknowledge their ask and say that it can not fulfill it right now (note that in our setup the
user must either finish filling the current form or exit);

– if the user asks a plausible question that the form documentation does not answer, the agent
should acknowledge the question and say that it can not be answered.

The user may ask other requests that have nothing to do with form-filling (i.e. weather requests).
In that case, the agent must politely decline the request and keep moving the conversation towards
either submitting or aborting the request. To align our definition of responsiveness with the common
sense meaning of this word, we also require a REsponsive assistant to acknowledge all valid slot
values and valid questions. Thus we often deem a response that is not Transparent, or not Helpful
also not REsponsive.

The GREADTH criteria above are binary, a conscious choice that we made to simplify the evaluation and the
analysis. We acknowledge that this makes them somewhat crude, as e.g. two assistant answers can be both
technically correct but can widely differ in readability and in the choice of the information to present. One
can complement these criteria with a preference-based experience evaluation that implicitly covers fluency,
verbosity, and other aspects of the assistant’s response.

5.3 Design of a Form Filling TapeAgent

Tape Structure To build an agent that provides a GREADTH experience, we decompose the conver-
sational form-filling task into smaller reasoning steps before each agent message. Having the GREADTH
metrics in mind, we define the agent’s thoughts to help it plan its response. The thoughts are used to
represent a chain-of-thought of the agent, which includes (a) analyzing the user’s intent (e.g. the form that
is requested, the provided slot values, a question being asked); (b) updating the internal state of the conver-
sation (e.g. slot-filling); and (c) planning the next actions (e.g. requesting a specific slot value or requesting
a user confirmation). In particular, after each user message or observation, the agent must return:

1. A list of thoughts: these include slot-filling related thoughts such as
UpdateFunctionParametersThought6; and message planning thoughts specifying the next
slot to request (RequestFunctionParametersThought), the need to ask for confirmation be-
fore submitting the request (RequestFunctionCallConfirmationThought), planning to an-
swer a question (AnswerFromFunctionSchemaThought), planning to inform the user that their
question cannot be answered (NoAnswerInFunctionSchemaThought), refusing unsupported re-
quest/behavior/slot values (RefuseInexistentFunctionThought / RefuseToEngageThought /
RefuseInvalidFunctionParameterValueThought), etc. The full list of thoughts is described in
Appendix E.2.

2. A single action: the agent returns a single action, such as searching available forms
(ResolveFunctionAction), retrieving form documentation (InspectFunctionAction), replying to the
user (PromptUserForTextMessageAction), submitting the request (CallFunctionAction), or exiting
the conversation (ExitAction). Each action results in new observations (available forms, retrieved
documentation, or user input), and ends the current agent turn.

Multi-node Teacher Agent We experimented with various combinations of prompting techniques and
LLMs to obtain the best performance (see GREADTH metrics in Sections 5.2 and human evaluation pro-
cedure in Section 5.4). We found that using Llama-405B with multi-step prompting7 (multiple TapeAgent
nodes) yielded the most promising results based on human evaluation. For additional details about the

6While working on the form-filling case-study we interchangeably used the terms form / request / function and the terms
slot / field / parameter. In this report we use the original technical names for the tape’s steps to maximize the coherence
between the text and the code.

7Also known as prompt chaining or step-wise prompting. More information can be found in prompt engineering guidelines,
e.g. https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts and https://platform.openai.com/
docs/guides/prompt-engineering/tactic-specify-the-steps-required-to-complete-a-task (Accessed on Oct 15, 2024)

12

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts
https://platform.openai.com/docs/guides/prompt-engineering/tactic-specify-the-steps-required-to-complete-a-task
https://platform.openai.com/docs/guides/prompt-engineering/tactic-specify-the-steps-required-to-complete-a-task

Technical report

Intent Classification Nodes (same for Teacher and Student)

1. Update slots,
Generate Plan,
and Respond in

one LLM call

I have noted the issue as "coffee machine

malfunction" and the resolution step as

"replacement". However, the provided complaint ID

is not valid because it is not a number. Please

provide a valid complaint ID.

1. Gather RAW
parameter values

parameters:

 complaint_id: "143A"

 issue_description: "coffee machine malfunctioned"

 resolution_steps: "replaced the machine"

complaint_id: int

issue_description: str

resolution_steps: Literal['maintenance', 'replacement', 'reimbursement']

2. Verify parameter
value & type

3. Update slots and
plan response

kind: update_function_parameters_thought

parameters:

 issue_description: "coffee machine malfunctioned"

 resolution_steps: "replacement"

5. Generate

kind: request_function_parameters_thought

parameters:

 complaint_id

✗

✓

✓

kind: refuse_invalid_parameter_value_thought

parameters:

 complaint_id: 143A

B.
Identify

relevant formA. Is Form
selected?

No

Yes

kind: inspect_function_action

function: "CustomerComplaintResolution"

kind: resolve_function_action

query: "customer complaint resolution"

ENVIRONMENT

Student Agent (Single- node)

I need to submit a customer complaint
resolution for complaint ID 143A,
describing the issue as "coffee machine
malfunctioned," and stating the
resolution steps as "replaced the
machine."

I have noted the issue as "coffee machine malfunction"

and the resolution step a s "replacement". However, the

provided complaint ID is not valid because it is not a

number. Please provide a valid complaint ID.

Teacher Agent (Multi- node)

To Teacher Agent To Student Agent

Forms

kind: update_function_parameters_thought

parameters:

 issue_description: "coffee machine malfunctioned"

 resolution_steps: "replacement"

kind: refuse_invalid_parameter_value_thought

parameters:

 complaint_id: 143A

kind: request_function_parameters_thought

parameters:

 complaint_id

[function_description_1, ... , function_description_10] candidates

function_name: CustomerCoomplaintResolution

args:

 ...

documentation

4. Plan next slot or
confirmation

requests

Figure 5: Node structure of the Teacher and the Student agents. The Teacher agent combines intent classification
nodes and 5 extra nodes, while the Student agent combines intent classification nodes plus 1 additional node. We
represent nodes in blue and produced steps in yellow. Please note that words intent/form/function and slot/field/-
parameter are used interchangeably in this report.

choice of model and agent structure, see Appendix E.4. Our Teacher agent is made of 7 nodes: 2 for intent
classification and 5 for slot filling (Figure 5):

• Is Form Selected? The initial node checks if we identified the user’s intent. This node does not
call any LLM, it simply checks if an InspectFunctionAction step is already present in the current
Tape. If a form has not yet been selected, the model proceeds to the next step (Step (B) in Figure 5).
Otherwise, the model moves directly to the form-filling phase (Step 1 (left) in Figure 5).

• Intent Discovery. This node (a) lists the available forms (ResolveFunctionAction queries the
Environment to return a list of available forms); and (b) finds the relevant one based on the previous
user’s message (InspectFunctionAction queries the Environment to return the form documentation).
If the LLM cannot identify the relevant form, it is prompted to ask again the user for its intent
(RefuseInexistentFunctionThought; RequestFunctionThought; PromptUserForTextMessageAction).

• Gather Raw Parameter Values. Once the user’s intent is discovered and its form documentation
imported, the LLM is prompted to extract all raw slot values present in the user’s message and yield
a GatherValuesThought step.

• Verify Parameter Values & Types. In this node, the LLM is prompted to verify all extracted
slot values based on the form documentation imported. The LLM verifies that each value is of the
correct type and is valid (in the case of categorical slots) with a VerifyValuesThought step.

13

Technical report

• Update Slots and Plan Response. Once we have identified the correct/incorrect slot values, the
LLM is prompted to update the filled slots with a UpdateFunctionParametersThought step, refuse in-
valid slots with RefuseInvalidFunctionParameterValueThought steps, and start planning its response
to the user with AnswerFromFunctionSchemaThought if applicable.

• Plan Next Slot or Confirmation Requests. This node prompts the LLM to move the conversa-
tion forward by either (i) requesting the next slot (RequestFunctionParametersThought), (ii) confirm-
ing that the user wants to submit the current request (RequestFunctionCallConfirmationThought),
or (iii) confirming that the user wants to exit the chat (RequestExitConfirmationThought).

• Generate. Eventually, the final node of our Teacher TapeAgent prompts the LLM to generate the
next action. Based on the previous steps/thoughts in the Tape, the agent can either (i) write a mes-
sage (PromptUserForTextMessageAction), (ii) submit the request (CallFunctionAction), or (iii) exit
the conversation (ExitAction).

See Figure 11 of Appendix E.5 for a sample Teacher tape.

Single-node Student Agent We design the Student agent with the goal of minimizing input and output
token counts in order to optimize cost. We describe the slot-filling task in one condensed LLM prompt (1
TapeAgent node) and use Llama-8B as the LLM to the Student agent to further optimize cost and inference
time. While we could get rid of the instructions entirely in the LLM prompt, we still provide enough
instructions so that a strong model (e.g. Llama-405B) can still make sense of the task in a zero-shot setting.
Our Student agent is made of 3 nodes: 2 for intent classification and 1 for slot filling (Figure 5):

• Is Form Selected? Same structure as the Teacher but with fewer and more compact instructions.

• Intent Discovery. Same structure as the Teacher but with fewer and more compact instructions.

• Update Slots, Generate Plan, and Respond. Using a single short prompt, we ask
the agent to generate all its thoughts (e.g. RefuseInvalidFunctionParameterValueThought;
UpdateFunctionParametersThought; RequestFunctionParametersThought) and end with an action
(e.g. PromptUserForTextMessageAction).

We show an example of the Student tape in Figure 12 of Appendix E.5.

5.4 Experiments

We consider the task of training a cost-effective conversational agent to help the user fill and submit a form.
We seek the conversational experience to score high in GREADTH metrics (Section 5.2), while requiring less
tokens per interaction and less cost per processed token. We attempt to distill a multi-node Teacher agent
that uses a large model into a single-node Student agent that uses a small model. For both finetuning and
evaluation purposes, we simulate the environment (synthetic forms and user interactions).

Synthetic Companies To simulate an enterprise environment with multiple forms, we prompt a Llama-
3-70B-Instruct model to generate the name and descriptions of 6 fictitious companies, which we divide
into training domains (FlyCorp, BigBankCorp, CoffeeCorp) and testing domains (DriveCorp, LuxuryCorp,
ShopCorp). For each company, we then prompt Llama-3-70B-Instruct to generate 10 plausible request forms
based on the company name and description. Each form has a name and a description. Eventually, for each
generated form description, we prompt Llama-3-70B-Instruct to generate a FunctionSchema for that request
form. FunctionSchemas are structured data representations including a name, a description, a JsonSchema
describing slots to fill, and a JsonSchema describing the object returned once the form is submitted. Slots to
fill have a name, description, type (categorical, date, email, string), optionality, possible values, and default
values. The prompts used to generate synthetic companies are described in Appendix E.1. Each of our
simulated environments has 10 available forms and identifying which form the user requests is part of the
form-filling task we tackle.

14

Technical report

Table 3: GREADTH Form Filler experiment results. The Teacher1 is a multi-node agent with Llama 3.1
405B Instruct FP8 as its LLM. The Student2 is a single-node agent with Llama 3.1 8b Instruct as its LLM. We also
evaluate the multi-node agent with GPT-4o and with Llama 3.1 8B Instruct as its LLM, as well as the single-node
agent with Llama 3.1 405B Instruct for comparison. The metrics are computed over 1524 partial dialogues from the
test domains. Read full analysis in Section 5.4.

Agent (LLM+Nodes) G Re A D T H GREADTH Score
(Human Raters)

Reference Comparison (GPT-4o-2024-08-06)
Multi-node (0-shot) 91.3% 87.1% 91.4% 92.7% 94.3% 87.2% 74.9%

Llama-3.1-405B-Instruct
Teacher1: Multi-node (0-shot) 89.8% 85.0% 87.9% 91.6% 92.5% 86.5% 75.8%
Single-node (0-shot) 74.2% 72.0% 76.8% 67.3% 78.9% 61.9% 43.2%

Llama-3.1-8B-Instruct
Multi-node (0-shot) 75.5% 57.7% 72.4% 74.0% 76.3% 60.3% 36.6%
Student2: Single-node (0-shot) 18.8% 6.2% 10.9% 11.6% 9.4% 12.7% 2.0%
Student2: Single-node (finetuned) 92.1% 86.4% 90.2% 94.4% 95.1% 87.1% 76.6%

User Agents In the multi-turn dialogue setting, distillation is more complex than running the Teacher
on a set of static contexts because of alternating agent and user turns. The user turns need to either be
produced by a human or generated. We define 19 different (single-node) User agents to generate the next
user message by simulating a variety of user behaviors. Some user behaviors are “easy” such as “answer
the agent’s question”, while others can be quite adversarial such as “provide a good value for slot X and a
bad value for slot Y ” or “ask for something unrelated”. All user agents and their respective behaviors are
described in Appendix E.3. Each of these User agents serves as a special instance of the Tape Environment
that responds to the assistant after each PromptUserForTextMessageAction step.

Synthetic Dialogue Generation We generate a dataset of dialogues by repeatedly and alternatively
running the Teacher agent and a User agent to generate the next turn from a set of partial conversations.
The minimal partial conversation contains only the “Hi, how can I help you?” Assistant message. User
agents are sampled randomly after each PromptUserForTextMessageAction steps from the Assistant, and
yield a user message Observation. The Assistant then continues the conversation until its next message. The
conversations end when they reach 18 turns (9 agent messages and 9 user messages), whenever the request
is submitted or aborted, or if the agent fails to produce a valid continuation (e.g. trying to fill a nonexistent
slot). We show an example of a full conversation between the Teacher agent and the User agent in Figure 11
(Appendix E.5). We structure the dataset as a tree of dialogues, while controlling for the width of the tree
(beam search), the diversity of user behaviors, and the diversity of filled forms (requests). We use a beam
size of width 500, up to 9 user turns and 9 agent turns. This results in roughly 13k train and 13k test
agent continuations per synthetic company.

Human Evaluation We perform human evaluation to score each agent turn on the basis of the GREADTH
metrics: groundedness, responsiveness, accuracy, discipline, transparency, and helpfulness (Section 5.2).
The labeling services were provided by Toloka,8 and the labelers were paid above the minimum wage in their
respective work locations. Labelers provide the 6 GREADTH binary labels per agent turn. We also have
expert labelers who audit 10% of the labels. We report scores for each metric as well as the GREADTH
score, which is equal to 1 only if all 6 metrics are satisfied, and 0 otherwise (binary AND). If the agent fails
to produce a valid continuation – due to unparsable JSON, invalid schema, attempting to fill an invalid slot
value, or submitting a form with missing values – then the agent automatically gets 0 for all 6 metrics.

Agent Distillation As described in Section 5.3, we construct the Teacher agent by prompting a very
large model, Llama-3.1-405B-Instruct-FP8 (runs on 8 H100-80GB GPUs) with sequential and lengthy in-
structions (multi-node agent) in order to obtain the best GREADTH score, with no regards to prompt

8https://toloka.ai/

15

Technical report

Table 4: Agent Cost vs. Performance Tradeoff. On the evaluation set, we report the average number of input
and output tokens per agent turn, and the average cost per million agent turns, by multiplying the number of tokens
with the retail price of the cheapest provider on Openrouter as of October 3rd 2024 ($0.055 per million input/output
tokens for Llama-3.1-8B-instruct and $1.79 for Llama-3.1-405B-instruct). The cost per million agent turns is only $85
for the Student vs. $28,157 for the Teacher, which represents a factor of 300 in savings. The cost for the Teacher
agent could be mitigated by prefix caching, but most of the multi-node prompts are context-dependent. Read full
analysis in Section 5.4.

Agent (LLM+Nodes) Input Tokens
/turn

Output Tokens
/turn

Cost
/1M turns

GREADTH
score

Reference Comparison (GPT-4o-2024-08-06)
Multi-node (0-shot) 15,431 526 $43,837 74.9%

Llama-3.1-405B-Instruct
Teacher: Multi-node (0-shot) 15,189 541 $28,157 75.8%
Single-node (0-shot) 1,435 97 $2,742 43.2%

Llama-3.1-8B-Instruct
Multi-node (0-shot) 15,189 541 $865 36.6%
Student: Single-node (0-shot) 1,437 208 $90 2.0%
Student: Single-node (finetuned) 1,441 110 $85 76.6%

102 103 104

Cost ($) / 1M agent turns
 (lower is better)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
R

E
AD

TH
 s

co
re

(h
ig

he
r

is
 b

et
te

r)

Zero-shot GPT-4o

(Multi-n
ode - $43,837)

Zero-shot Teacher Agent
(Multi-node - $28,157)

Zero-shot Single-node Agent
($2742)

Zero-shot Multi-node Agent
($865)

Zero-shot Student Agent
(Single-node - $90)

Finetuned Student Agent
(Single-node - $85)

Cost ($) / 1M turns vs. GREADTH Score Tradeoff

GPT-4o (Reference)
Llama-405b
Llama-8b

Figure 6: Cost per 1M Agent Turns vs. GREADTH Score Tradeoff. The finetuned Student agent (top-left)
performs on par with the Teacher and reference agents (top-right) for a fraction of the cost. We also provide ablations
for various combinations of LLMs and node flows (single -vs- multi), which shows that finetuning is instrumental in
getting the desired performance when using a short and simple LLM prompt (single-node). See Section 5.4 for the
full discussion.

16

Technical report

length optimization or latency. From a qualitative perspective, our interaction with the Teacher agent reveals
a generally satisfactory user experience and validates its choice as a Teacher agent. We construct the Stu-
dent agent by combining a much smaller model, Llama-3.1-8B-Instruct model (runs on a single A100-80GB
GPU), with a single-node (single-node agent) optimized for length. We distill the Teacher agent into the
Student agent by finetuning it over 13k teacher agent turns (continuations) on the training domains. We
perform a single epoch of LoRA (Hu et al., 2021) optimization using AdamW (Loshchilov and Hutter, 2017)
with learning rate 1e-5 and batch size 32. More epochs did not seem to help.

Results We evaluate the Teacher and Student agents by generating a single agent turn (continuation) over
a set of 1524 partial dialogues subsampled from the testing domains generated previously. We control for
the diversity of user behaviors (19 mostly uniform) and for the diversity of requested forms (30 forms split
over 3 domains + dialogues where no form has been selected yet). Here is what we observed:

1. The Teacher agent achieves a GREADTH Score of 75.8% (Table 3) at the expensive cost of
28,157$/1M agent turns (Table 4), due to using a large model and multiple nodes with lengthy
instructions. In comparison, the Student agent achieves an honorable 76.6% GREADTH score
comparable to the Teacher agent but costing only 85$/1M agent turns, a factor 300x cheaper,
thanks to shorter instructions and smaller model.

2. We also evaluate single-node agents (same as the Student) but with different LMs in a 0-shot setting,
with no fine-tuning. We achieve GREADTH scores of only 43.2% with Llama-3.1-405B and 2.0%
with Llama-3.1-8B. This is not particularly surprising given that the single-node Student agent
prompt is designed for cost optimization over task success, though it is interesting to observe that
the big gap between the two LLMs (43.2%-2.0%=41.2% points) is entirely closed by the finetuning
process (the finetuned Student is 0.8% points above the Teacher).

3. Similarly, we evaluate a multi-node agent (same as the Teacher) but with a small LM (Llama-
3.1-8B-Instruct) in a 0-shot setting, with no fine-tuning. We observe a large difference of 75.8%-
36.6%=39.2% points, which mostly confirms that while using the largest models is most crucial in
the zero-shot regime, finetuning smaller models can close the gap and generalize across domains.

6 Related Work

Among the developer-oriented frameworks most similar to TapeAgents are LangGraph (Chase, 2023) and
AutoGen (Wu et al., 2024a). In LangGraph, one builds the agent at a very low-level as a concurrent
graph-based state machine. AutoGen offers a high-level paradigm to build multi-agent teams. TapeAgents
combines the best of these two worlds, as it allows both the low-level control and the implementation of
higher-level low-code paradigms like AutoGen. Neither LangGraph nor AutoGen are designed with agent
optimization in mind.

On the other side of the spectrum are AI frameworks that have recently demonstrated techniques to automat-
ically optimize prompts and tweak other aspects of agent configuration, such as the flow or the assignment of
tools to the agents. Solutions using DSPy (Khattab et al., 2023b) and TextGrad (Yuksekgonul et al., 2024)
attain higher performance compared to human prompt engineering. AgentOptimizer (Zhang et al., 2024)
and agent symbolic learning (Zhou et al., 2024) enable improving agent tools and pipelines. Meta-Agent
Search (Hu et al., 2024) aims to create the best multi-agent architecture. The rich metadata that links the
tape with the agent configuration in TapeAgents provides a perfect medium for implementing agent opti-
mization algorithms like the ones from the above works. Notably, DSPy and TextGrad implement control
flow in pure Python, which created challenges for resuming the agent from a persistent session state. In
TapeAgents, developers can freely use Python within one node, but between-node control flow is handled by
adding steps to the tape, which makes the tape perfect for session persistence.

17

Technical report

6.1 Detailed comparison with LangGraph, AutoGen, DSPy

To show that TapeAgents is uniquely holistic in targeting all stages of LLM agent lifecycle, we present a more
detailed side-by-side comparison of TapeAgents with three particularly popular frameworks: LangGraph,
AutoGen9 and DSPy. We focus on the following seven axis that are particularly helpful to differentiate these
frameworks:

1. Building from Components while Allowing Finegrained Flow Control All the frame-
works we compare here allow building agentic systems from components, which are called agents in
TapeAgents and AutoGen, subgraphs in LangGraph, predictors in DSPy. TapeAgents and Lang-
Graph additionally offer fine-grainted control flow inside each module via nodes and transition
between them. To have the same level of control in AutoGen, one must write long non-resumable
blocks of Python code.

2. Native Streaming Support LangGraph and TapeAgents natively support response streaming
by propagating intermediate event loops through the orchestration loops. Streaming support for
AutoGen agents requires substantial change to the agent implementation.

3. Concurrent LLM Calls LangGraph state-machine natively supports concurrent node execution,
which allows one to make concurrent LLM Calls. At the moment the agent in TapeAgents can only
run one node of one agent at a time. We have a plan on how to address this limitation, see Section 7
for details. We believe AutoGen also has no intra-agent concurrency at the framework level. DSPy
users orchestrate DSPy modules with Python code, hence they can use Python multithreading to
run multiple modules concurrently.

4. Resumable State Machine Agents Developer-friendly frameworks like LangGraph and
TapeAgents share the following design pattern: (a) there is a notion of the agent state (tape)
that is serializable and that fully determines the agent’s behavior (b) one implements an agent by
defining how the agent makes the new state from the old state in response to external inputs, such
as LLM outputs or API responses. This state machine agent pattern should be contrasted with
implementing the agent in pure Python code as advocated by DSPy. In the latter case the agent
state is entangled in the non-serializable state of the Python interpreter. The advantage of having a
well-defined state machine for the agent is that it can resume from frequent state checkpoints, such
as intermediate tapes in case of TapeAgents, and it can be stopped at any time. Our understanding
is that AutoGen provides less control over resumption and agent execution, e.g. one can not just
rerun the next speaker selection or restart the agent from a pre-recorded speaker selection.

5. Log Reuse Across Agents A practitioner that uses TapeAgents can reuse tapes from one agent to
evaluate or improve another agent. We show an example of this pattern in our form-filling case-study
in Section 5. There, the tapes could be reused as is, though we believe often minor modifications
can suffice for adapting the tape from e.g. a monolithic agent to an agent team. Our understanding
is that from the frameworks in comparison only LangGraph can be modified to support this pattern.

6. Structured Logs and Agent Configurations for Data-Driven Agent Optimization In
TapeAgents the agent configuration and the tape are highly structured and linked with metadata,
helping the implementation of agent optimization algorithms. LangGraph does not currently posi-
tion its event sequences as a medium to express algorithms. We likewise found the message history
and the agent configuration in AutoGen were not designed with agent optimization in mind. On the
contrary, the hierarchical structure of DSPy predictors and the traces that DSPy programs enabled
implementation of numerous effective algorithms.

7. Making Training Text From Semantic-Level Logs Tape offers a semantic-level representation
of the agent session that the agent can convert into low-level training text for LLM finetuning. This
is a unique trait of our framework which we believe LangGraph and AutoGen do not share. We
believe with some effort a similar pattern could be implemented in DSPy.

9A new AutoGen 0.4 version with major changes came out when we were writing this report. The comparison below is based
on a prior version.

18

Technical report

Development Optimization
Method Building from

Components
while Allow-
ing Finegrained
Flow Control

Native
Streaming
Support

Concurrent
LLM
Calls

Resumable
State
Machine
Agents

Log Reuse
Across
Agents

Structured Logs
and Agent Con-
figurations for
Data-Driven Agent
Optimization

Making
Training
Text From
Semantic-
Level Logs

DSPy ✓ ✗ ✓ ✗ ✗ ✓ ▲
LangGraph ✓ ✓ ✓ ✓ ▲ ▲ ✗
AutoGen ▲ ▲ ✗ ▲ ✗ ▲ ✗

TapeAgents (Ours) ✓ ✓ ✗ ✓ ✓ ✓ ✓

Table 5: TapeAgents vs Other Frameworks. TapeAgents stands out in features it offers to the practitioner to
the support them throughout the LLM Agent development cycle. In this figure, we use the cross sign (✗) to indicate
that major core changes would be required for the framework support the feature. Triangle sign (▲) indicates partial
support of a feature, meaning that practitioner would have to do extra effort or accept associated limitations to achieve
the respective functionality. Check sign (✓) indicates that the framework natively supports a feature. TapeAgents’s
only weakness in this table is the lack of Concurrent LLM Calls, see Section 7 for a discuss of how we intend to tackle
it.

We refer the reader to Table 5 for a tabular summary of the above analysis. One can see that TapeAgents
uniquely helps practitioners to both develop the agent and optimize it in a data-driven way.

6.2 Observability Platforms vs TapeAgents

Agent observability software such as LangSmith10 and Langfuse11 adds visibility to agent execution. They
allow one to incrementally instrument agent code to track specific components. In TapeAgents, the tape
offers complete observability by design, but beyond that it can also be used for point-in-time resumption
and agent optimization.

7 Discussion and Future Work

We have presented TapeAgents, a holistic framework that targets all stages of the LLM Agent lifecycle. We
believe the tape-centered approach of our framework can facilitate responsible deployment and continual
improvement of LLM agents. Initial tapes will help debugging and testing at the development stages,
historical tapes from production agent sessions will serve as a machine-readable source of evaluation and
training data. Red-teaming algorithms can use historical tapes as seed data for testing the agent on potential
attacks or business-critical dangerous situations. The practitioner can also use historical tapes to seed the
simulation that they use for testing the agent. These are but a few benefits that TapeAgents can bring to
practitioners.

7.1 Immediate Next Steps

TapeAgents is still in early development stages. A key next step for TapeAgents is adding coroutine im-
plementations for the agent loop and for agent-environment orchestration. This will enable both running
many agent-environment loops in parallel on their respective tapes and running members of the same agent
team on their shared tape. The latter will require changes in the tape view computation to ignore steps of
the agents running in parallel, but we believe that the main framework concepts that we introduced in this
paper will stay the same.

On the optimization front, we will soon release an online Reinforcement Learning (RL) trainer for
TapeAgents, which will improve the assistant agent using the rewards that the annotator agent com-
putes. Another welcome optimizer addition would be implementing in TapeAgents a text-based feedback-
propagation algorithm like the one in TextGrad. Tapes steps are a perfect medium to attach feedback
to.

10https://www.langchain.com/langsmith
11https://github.com/langfuse/langfuse

19

https://www.langchain.com/langsmith
https://github.com/langfuse/langfuse

Technical report

7.2 Agent as an Optimizable Workflow

Stepping back from the immediate future plans, we believe it is worth reflecting on what should be called an
LLM Agent and what should be called “just” a program, a workflow or software. In the TapeAgents context,
this philosophical question is what the developer asks themselves when they build an agent—whether they
should implement as agent nodes, and what should go in the application that uses the agent. Our current
recommendation is that one should treat and implement the parts of the system that they intend to optimize
with data-driven algorithms as LLM Agents. Frameworks provide the structure that the algorithms require
to identify the issue, propose a change, and test the change’s outcome. In TapeAgents, this process is
particularly clear: the algorithm will identify an issue in the tape, attribute it to a root cause step, propose
a change to the agent configuration and test this change by resuming the agent from intermediate points in
the tape. Thus the gains from algorithmic improvement will compensate for the overhead of respecting the
TapeAgents engineering constraints. To sum up, our recommendation is to implement optimizable workflows
as LLM Agents and use other appropriate tools for the software that will not be subject to data-driven
improvement.

7.3 Synthetic Data Generation with Worlds of TapeAgents

In addition to helping practitioners with their solution-specific challenges, we envision synthetic data gener-
ation as another application area where TapeAgents can make an impact. A key trend in the data-making
trade is building modular pipelines with many agent-like modules, such as prompt-generating workflows (Mi-
tra et al., 2024), judges (Bai et al., 2022), meta-judges (Wu et al., 2024b), process supervisors (Lightman
et al., 2023; Uesato et al., 2022), annotator augmented with tools (Wei et al., 2024) among other examples.
We believe TapeAgents is a great foundation for the continual improvement of such multi-agent pipelines with
human feedback, as implementing all pipeline modules as TapeAgents immediately makes them optimizable.

Acknowledgements

We would like to thank Nicolas Chapados, Chris Manning, Chris Pal, Sebastien Paquet, Siva Reddy, Arkil
Patel and David Vazquez for their feedback and ideas.

References
Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A.,

McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D., Ganguli, D., Li, D., Tran-
Johnson, E., Perez, E., Kerr, J., Mueller, J., Ladish, J., Landau, J., Ndousse, K., Lukosuite, K., Lovitt,
L., Sellitto, M., Elhage, N., Schiefer, N., Mercado, N., DasSarma, N., Lasenby, R., Larson, R., Ringer, S.,
Johnston, S., Kravec, S., Showk, S. E., Fort, S., Lanham, T., Telleen-Lawton, T., Conerly, T., Henighan,
T., Hume, T., Bowman, S. R., Hatfield-Dodds, Z., Mann, B., Amodei, D., Joseph, N., McCandlish, S.,
Brown, T., and Kaplan, J. (2022). Constitutional ai: Harmlessness from ai feedback.

Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva, I., Stefan, U., Osman, R., and Gašić, M. (2018).
Multiwoz - a large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue modelling. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Chase, H. (2022). LangChain.

Chase, H. (2023). LangGraph.

Drouin, A., Gasse, M., Caccia, M., Laradji, I. H., Verme, M. D., Marty, T., Vazquez, D., Chapados, N., and
Lacoste, A. (2024). Workarena: How capable are web agents at solving common knowledge work tasks?
In Forty-first International Conference on Machine Learning.

Gugger, S., Debut, L., Wolf, T., Schmid, P., Mueller, Z., Mangrulkar, S., Sun, M., and Bossan, B. (2022).
Accelerate: Training and inference at scale made simple, efficient and adaptable. https://github.com/
huggingface/accelerate.

20

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Technical report

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021). Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv: 2106.09685.

Hu, S., Lu, C., and Clune, J. (2024). Automated design of agentic systems.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., Santhanam, K., Vardhamanan, S., Haq, S., Sharma,
A., Joshi, T. T., Moazam, H., Miller, H., Zaharia, M., and Potts, C. (2023a). DSPy: Compiling declarative
language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., Santhanam, K., Vardhamanan, S., Haq, S., Sharma,
A., Joshi, T. T., Moazam, H., Miller, H., Zaharia, M., and Potts, C. (2023b). DSPy: Compiling declarative
language model calls into self-improving pipelines.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman, J., Sutskever,
I., and Cobbe, K. (2023). Let’s verify step by step. arXiv preprint arXiv:2305.20050.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. International Conference on
Learning Representations.

Mialon, G., Fourrier, C., Wolf, T., LeCun, Y., and Scialom, T. (2024). GAIA: a benchmark for general AI
assistants. In The Twelfth International Conference on Learning Representations.

Mitra, A., Corro, L. D., Zheng, G., Mahajan, S., Rouhana, D., Codas, A., Lu, Y., ge Chen, W., Vrousgos,
O., Rosset, C., Silva, F., Khanpour, H., Lara, Y., and Awadallah, A. (2024). Agentinstruct: Toward
generative teaching with agentic flows.

Pryzant, R., Iter, D., Li, J., Lee, Y., Zhu, C., and Zeng, M. (2023). Automatic prompt optimization with
“gradient descent” and beam search. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 7957–7968, Singapore. Association for Computational Linguistics.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. (2020). Deepspeed: System optimizations enable
training deep learning models with over 100 billion parameters. Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Rastogi, A., Zang, X., Sunkara, S., Gupta, R., and Khaitan, P. (2020). Towards scalable multi-domain
conversational agents: The schema-guided dialogue dataset. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8689–8696.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L., Creswell, A., Irving, G., and Higgins,
I. (2022). Solving math word problems with process- and outcome-based feedback.

Wei, J., Yang, C., Song, X., Lu, Y., Hu, N., Huang, J., Tran, D., Peng, D., Liu, R., Huang, D., Du, C., and
Le, Q. V. (2024). Long-form factuality in large language models.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang, L., Zhang, X., Zhang, S., Liu, J., Awadallah,
A. H., White, R. W., Burger, D., and Wang, C. (2024a). Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. In COLM.

Wu, T., Yuan, W., Golovneva, O., Xu, J., Tian, Y., Jiao, J., Weston, J., and Sukhbaatar, S. (2024b).
Meta-rewarding language models: Self-improving alignment with LLM-as-a-meta-judge. arXiv preprint
arXiv:2407.19594.

Wu, Z., Han, C., Ding, Z., Weng, Z., Liu, Z., Yao, S., Yu, T., and Kong, L. (2024c). Os-copilot: Towards
generalist computer agents with self-improvement.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. (2023). ReAct: Synergizing
reasoning and acting in language models.

Yuksekgonul, M., Bianchi, F., Boen, J., Liu, S., Huang, Z., Guestrin, C., and Zou, J. (2024). Textgrad:
Automatic "differentiation" via text.

21

Technical report

Zhang, S., Zhang, J., Liu, J., Song, L., Wang, C., Krishna, R., and Wu, Q. (2024). Training language model
agents without modifying language models. ICML’24.

Zhou, W., Jiang, Y. E., Li, L., Wu, J., Wang, T., Qiu, S., Zhang, J., Chen, J., Wu, R., Wang, S., Zhu,
S., Chen, J., Zhang, W., Tang, X., Zhang, N., Chen, H., Cui, P., and Sachan, M. (2023a). Agents: An
open-source framework for autonomous language agents.

Zhou, W., Ou, Y., Ding, S., Li, L., Wu, J., Wang, T., Chen, J., Wang, S., Xu, X., Zhang, N., Chen, H., and
Jiang, Y. E. (2024). Symbolic learning enables self-evolving agents.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. (2023b). Large language models
are human-level prompt engineers. In The Eleventh International Conference on Learning Representations.

22

Technical report

A Multi-Agent Code Example

import json
from tapeagents.agent import Agent, Node
from tapeagents.core import Prompt, SetNextNode, Call, Respond
from tapeagents.dialog_tape import DialogTape, AssistantThought, ToolCalls, UserStep,

AssistantStep
from tapeagents.llms import LLMStream, LiteLLM
from tapeagents.prompting import view_to_messages
from tapeagents.orchestrator import main_loop
from tapeagents.tools.simple_browser import SimpleTextBrowser
from tapeagents.tools.stock import get_stock_data, get_stock_ticker
from tapeagents.environment import ToolEnvironment
to visualize Tapes in Python notebooks
from tapeagents.rendering import render_tape_with_prompts
from tapeagents.renderers.camera_ready_renderer import CameraReadyRenderer
from IPython.display import HTML, clear_output

######### Search Agent #########

define environment of search agent
browser = SimpleTextBrowser()
search_agent_env = ToolEnvironment([

browser.get_search_results, browser.get_page, browser.get_next_page
])

define the main node of the search agent
class SearchAgentMainNode(Node):

def make_prompt(self, agent, tape: DialogTape) -> Prompt:
view = agent.compute_view(tape)
search_system_message = {

"role": "system",
"content": """Use at most 5 tool calls to search the request info on on the web."""

}
return Prompt(

messages=[search_system_message] + view_to_messages(view.top, agent),
tools=search_agent_env.get_tool_schema_dicts()

)

def generate_steps(self, agent, tape, llm_stream: LLMStream):
m = llm_stream.get_message()
if m.content:

if the LLM responds, yield Respond(..) as your last step. This special step tells the
orchestrator that this agent is done. The next active agent will be the one that `Call`
ed it (the Analyst Agent in this case).

yield Respond(content=m.content)
elif m.tool_calls:

while the LLM suggests tool calls, yield them as action steps
yield ToolCalls.from_llm_output(m)
yield SetNextNode(next_node=0) # set yourself as next node for when you get called again

else:
raise ValueError()

create the search agent

23

Technical report

search_agent = Agent.create(name="search_agent", llms=LiteLLM(model_name="gpt-4o"), nodes=[
SearchAgentMainNode()])

######### Analyst Agent #########

define environment of analyst agent

We will use the tool choice mechanism to let the main agent call its search specialist agent.
To this end, we create a mock tool that represents calling the search agent.
def call_search_agent(query: str):

"""Use this tool to ask a fellow AI agent to search for information on the web."""
pass

main_agent_env = ToolEnvironment([
get_stock_ticker, get_stock_data, call_search_agent

])

today = "2024-09-17" # fixed date for reproducible tests
system_message = {"role": "system", "content": f"""
You will help the user to learn about financials of companies. For general user queries, include

some info about stock price changes during the last year, as well as some general
information on the company. Today is {today}.

"""}

define the two nodes of the main agent
class PlanNode(Node):

def make_prompt(self, agent, tape) -> Prompt:
view = agent.compute_view(tape)
guidance_message = {

"role": "user",
"content": """Write a natural language plan on how to use tools help the user. Output a

list of numbered items, like 1., 2., 3., etc."""
}
return Prompt(

messages=[system_message] + view_to_messages(view.top, agent) + [guidance_message],
tools=main_agent_env.get_tool_schema_dicts(),

)

def generate_steps(self, agent, dialog, llm_stream: LLMStream):
the PlanNode should only yield thoughts based on the llm output
if content := llm_stream.get_message().content:

yield AssistantThought(content=content)
else:

raise ValueError()

class ActNode(Node):
def make_prompt(self, agent, tape: DialogTape) -> Prompt:

view = agent.compute_view(tape)
guidance_message = {

"role": "user",
"content": """Follow the plan you created to earlier. When you are done, respond to the

user."""
}
return Prompt(

24

Technical report

messages=[system_message] + view_to_messages(view.top, agent) + [guidance_message],
tools=main_agent_env.get_tool_schema_dicts(),

)

def generate_steps(self, agent, dialog, llm_stream: LLMStream):
m = llm_stream.get_message()
if m.content:

show the llm output as your response and give back control to plan node
yield SetNextNode(next_node=0) # set next node to Plan node
yield AssistantStep(content=m.content) # show the llm output

elif m.tool_calls:
yield SetNextNode(next_node=1) # set next node to Act node (self) until we get tool_calls
only keep the tool calls before the call to another agent
agent_call = None
for i, tc in enumerate(m.tool_calls):

if tc.function.name == "call_search_agent":
agent_call = tc
m.tool_calls = m.tool_calls[:i]
break

either produce the ToolCalls action OR call another agent
if m.tool_calls:

yield ToolCalls.from_llm_output(m)
else:

assert agent_call and agent_call.function.name == "call_search_agent"
yield Call(
agent_name="search_agent",
content=json.loads(agent_call.function.arguments)["query"]

)
else:

raise ValueError()

define the main (root) agent
multi_agent_analyst = Agent.create(name="analyst", subagents=[search_agent.clone()], llms=LiteLLM

(model_name="gpt-4o"), nodes=[PlanNode(), ActNode()])

define the starting point: a DialogTape with only 1 UserStep
start_tape = DialogTape(steps=[UserStep(content="Tell me about Vulcan in 3 sentences")])

define the whole environment as the combination of all agents & subagents environments
whole_env = ToolEnvironment([

get_stock_ticker, get_stock_data, browser.get_search_results, browser.get_page, browser.
get_next_page

])

Main loop executing the `multi_agent_analyst` on the `start_tape` in the `whole_env`
environment.

for event in main_loop(multi_agent_analyst, start_tape, whole_env):
`event`s are all types of steps yielded by the `multi_agent_analyst` when running on the `

start_tape` in the `whole_env` environment.
if new_tape := event.agent_tape or event.env_tape:

show a fresh render every time when the environment finishes reacting with new actions
clear_output()
display(HTML(render_tape_with_prompts(new_tape, CameraReadyRenderer())))

25

Technical report

B Agentic RAG Code Examples

Listing 1: add_demos function

def add_demos(agent: Agent, tapes: list[Tape], max_n_demos: int, seed: int = 1):
"""Extract demos for function templates from the given tapes.
When there are too many demos, select random ones.
"""
demos = {template_name: [] for template_name in agent.templates}
for tape in tapes:

for node, index in agent.get_node_runs(tape):
if isinstance(node, LLMFunctionNode):

demos[node.template_name].append(node.extract_demo(agent, tape, index))
rng = random.Random(seed)
agent_copy = agent.model_copy(deep=True)
for template_name, template in agent_copy.templates.items():

k = min(max_n_demos, len(demos[template_name]))
template.demos = rng.sample(demos[template_name], k)

return agent_copy

Listing 2: LLMFunction templates

Create a template for answering questions
def make_answer_template() -> LLMFunctionTemplate:

return LLMFunctionTemplate(
desc="Answer questions with short factoid answers.",
inputs=[

ContextInput(name="context", desc="may contain relevant facts", separator="\n"),
The question to be answered
Input(name="question"),

],
outputs=[

Rationale for the answer
RationaleOutput.for_output("answer"),
The actual answer
AssistantOutput(name="answer", desc="often between 1 and 5 words")

]
)

Create a template for generating search queries with a retrieval tool
def make_query_template() -> LLMFunctionTemplate:

return LLMFunctionTemplate(
desc="Write a simple search query that will help answer a complex question.",
inputs=[

ContextInput(name="context", desc="may contain relevant facts", separator="\n"),
The question for which a search query is needed
Input(name="question"),

],
outputs=[

Rationale for the generated query
RationaleOutput.for_output("query"),
The generated search query, to be used with a retrieval tool
ToolCallOutput(name="query", tool_name="retrieve", arg_name="query")

]
)

26

Technical report

C Agent Tree and Tape

Initiator

Manager

Software
Engineer

Code Executor

Asset Reviewer

Terminate or
Reapeat

Respond

Execute Code

Respond

Respond

Broadcast Last
Message

Select and Call

Respond or Repeat

Call

Figure 7: A multi-agent tree configuration showing nodes (left) and a tape resulting from their collaboration (right)
with color-coded steps: yellow for external agent thoughts (enabling collaboration), purple for internal agent thoughts,
blue for actions, and green for observations. The step’s author is indicated in grey using the “Agent.node” format.

27

Technical report

D Tape Tools

Figure 8: TapeAgents Studio: Application to help AI Admin to edit Tape, resume and debug Agentic Systems

28

Technical report

Figure 9: Tape Browser: Application to inspect a batch of tapes result. This tape is a GAIA task where the
Agent did not provide the right answer. No step failed during the session.

29

Technical report

Figure 10: Tape Diff: Application to compare two batches of tape.

30

Technical report

E GREADTH Form Filler

E.1 Virtual Companies Prompts

To generate synthetic environments/companies with 10 request forms available in each we use a three-step
prompting method with Llama-3-70B.

1. The first step is to generate a description of a fake company. For this, we use the following prompt:

messages = [
{

"role": "system",
"content": "You are a helpful assistant."

},
{

"role": "user",
"content": f"Give me a description of {real_name} but replace all occurrences of
`{real_name}` by `{fake_name}`."

}
]

with real_name and fake_name being set to different company names (e.g. “Starbucks” and “Cof-
feeCorp” respectively). This step produces a DESCRIPTION variable that will be used in the next
step.

2. The second step is to generate a list of 10 request forms for each fake company. For now, we only
ask the model to generate a name and a description for each form with the following system and
user prompts:

SYSTEM_MESSAGE = """
You are a helpful enterprise assistant who is very well integrated into the
internal system of [ENTERPRISE_NAME]. You have access to the database of
[ENTERPRISE_NAME], which contains REQUEST_FORMS. REQUEST_FORMS can be used
by employees and clients to submit requests and trigger automations.
REQUEST_FORMS have the following data format:
```python
class FunctionSchema(BaseModel):

name: FunctionName
description: str = Field(description="The description of the function.")
parameters: JsonSchema = Field(default=None, description="The JSON schema

of the function's parameters.")
return_value: JsonSchema = Field(default=None, description="The JSON
schema of the function's return value.")

```
"""
messages = [

{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": f"""

[ENTERPRISE_NAME] is '{fake_name}'.
{DESCRIPTION}
Give me the name and description of 10 REQUEST_FORMS that are often used
at {fake_name}. Make sure the REQUEST_FORMS are specific to {fake_name}
use cases. Format the output as a JSON list of JSON dictionaries with
'name' and 'description' keys. Make sure the output is JSON parsable.

"""},
]

31

Technical report

with fake_name and DESCRIPTION defined in the previous step. The output is a list of 10 request form
names and descriptions. We programmatically verify that the output is JSON parsable.

3. Eventually, for each request form dictionary (FORM) generated previously, we prompt llama3-70B to
generate the FunctionSchema like this:

messages = [
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": f"""

[ENTERPRISE_NAME] is '{fake_name}'.
{DESCRIPTION}
Show me the FunctionSchema of the following REQUEST_FORM:
```json
{FORM}
```
First, rephrase the description to be more specific. The description must include
rules, facts, and policies at {fake_name} about {FORM['name']}, such as when
to fill this request, who will process the request, etc... The description must
also include information about the parameters to help the user fill the form.
For multiple choice parameters (enum), the description must explain the
difference between each possible value.

Once the description is written, remove all colon (:) characters from it.

Second, write the yaml format of this FunctionSchema by replacing the description
with your detailed version. Parameters cannot be nested objects, but return values
can. The FunctionSchema must contain both required and optional parameters.
Write the output in yaml format. The output must be parsable as a FunctionSchema.

"""},
]

with SYSTEM_MESSAGE, fake_name, DESCRIPTION, and FORM defined in the previous steps. We ver-
ify programmatically that the output is parsable as a FunctionSchema. An example of generated
FunctionSchema can be seen in Step [5] of the Tapes in Figures 11 & 12 (Appendix E.5).

E.2 List of Form-Filler Agent Thoughts and Actions

Form-filler thoughts. Below, we list the available thoughts for our Form-Filler TapeAgent and explain
when they should be used:

• AnswerFromFunctionSchemaThought: This thought premeditates answering the user’s question that
the agent knows how to answer based on the form description. Attributes:

– function: The name of the function to answer a question about.

• NoAnswerInFunctionSchemaThought: This thought premeditates informing the user that the agent
does not know the answer to their question. Attributes:

– function: The name of the function.

• RefuseInexistentFunctionThought: A thought that indicates that the query could not be resolved
to a function.

• RefuseInvalidFunctionParameterValueThought: This thought premeditates informing the user that
a function parameter value is invalid. Attributes:

– function: The name of the function.

32

Technical report

– parameter: The name of the parameter the user tried to set a value for.
– parameter_value: The value the user tried to set for the parameter.

• RefuseSkippingParameterThought: This thought premeditates informing the user that a function
parameter cannot be skipped because it is required. Attributes:

– function: The name of the function.
– parameter: The name of the required parameter that the user tried to skip.

• GatherValuesThought: This thought records extracted parameters from the user’s message and is
mainly used in the multi-node Teacher agent. Attributes:

– function: The name of the function.
– parameters: Dictionary mapping parameter names to their extracted values.

• VerifyValuesThought: This thought records the validity status of parameter values extracted from
the user’s message and is mainly used in the multi-node Teacher agent. Attributes:

– function: The name of the function.
– parameters: Dictionary mapping parameter names to their value, their validity, and the expla-

nation when invalid.

• UpdateFunctionParametersThought: This thought updates the values of the parameters of a function
based only on the user’s last message. It is used when the user provides NEW information about
the parameters of a function or when the user wants to skip an optional parameter. Attributes:

– function: The name of the function.
– assign: The dictionary assignment of parameter names to their NEW values (optional, default:

{}). If no NEW values are provided, set ‘assign’ to {}.
– skip: The list of NEW optional parameter names to skip (optional, default: []). If no NEW

parameters are skipped, set ‘skip’ to [].

The ‘assign’ attribute sets or updates parameter values based on the last user message. It is only ap-
plied to parameters that are newly filled or have updated values. Parameters that remain unchanged
will not have the ‘assign’ attribute. The ‘skip’ attribute is set for optional parameters when the user
wants to ignore or skip an optional parameter. It is only applied to new optional parameters that
the user wants to skip and will not be used for parameters that were already skipped.

• RequestFunctionThought: This thought premeditates requesting the user to select a function. At-
tributes:

– functions: The list of available functions the user can select.

• RequestFunctionParametersThought: This thought premeditates requesting the user to provide a
value for one parameter of a given function. Attributes:

– function: The name of the function to request parameters for.
– parameters: A list containing only one value which is the parameter to request.

• RequestFunctionCallConfirmationThought: This thought is a preliminary step before calling a func-
tion. This step is ONLY used once ALL parameters are filled or skipped. Attributes:

– function: The name of the function.

• RequestExitConfirmationThought: This thought is a preliminary step before exiting the dialogue.
The message MUST be short and concise. The message should contain clear and explicit confirmation
of the acceptance of the last value provided by the user.

33

Technical report

Form-filler actions. Here are the available actions our Form-Filler TapeAgent can take.

• ResolveFunctionAction: An action that resolves which function candidates are compatible with a
given user query. Attributes:

– query: The query to resolve the function with, by default the user’s last message.
– result: A list of candidate functions that are compatible with the query.

• InspectFunctionAction An action that inspects the schema of a function given its name. This action
inspects and returns the schema of the function, which contains its description and the names and
types of the function’s parameters. Attributes:

– function: The name of the function.
– result: The schema of the function.

• PromptUserForTextMessageAction: An action that asks the user to enter a message in a text input
field. This action is used to capture free-form text input from the user through a standard text
input field. This action must be used in every single agent’s response. Attributes:

– prompt: The message from the agent to the user.
– result: User message

• CallFunctionAction: This action calls a function with all available parameter values. Attributes:

– function: The name of the function to call.
– result: Result of the function call

• ExitAction: With this action the agent indicates that the dialogue has ended. No further steps will
be executed after this step. Attributes:

– text: The message from the agent to inform the user that the dialogue has ended.

34

Technical report

E.3 User Agents

Table 6: The list of user agents implemented for all domains. The User LLM is a prompted Llama-3.1-405B-Instruct
model.

Agent Name Behavior

UserInitMessageAmazing
At the begining of the conversation, the user should
request a specific intent and provide values for some
of the parameters in that request.

UserInitMessageShort At the beginning of the conversation, the user should
request a specific intent in a short message.

UserInitMessageAsk At the beginning of the conversation, the user should
ask the agent what it can do.

UserBadInitMessage At the beginning of the conversation, the user should
ask to do something impossible.

UserHappyPath The user correctly answers the agent question.

UserMultislotInstruct The user replies to the agent question and provides
values for additional parameters in the request.

UserMultislotFuture The user provides values for additional
parameters in the request.

UserChangesSlot The user changes the value to a previously
set request parameter.

UserAdjectiveOrPosition
For categorical parameters, the user answers the agent
but instead of giving the choice name, uses an
adjective or a positional number that defines its choice.

UserSkipsOptional For optional parameters, the user asks to skip it.

UserAsksAboutDocs
The user does not answer the agent, and instead
asks a question that can be answered based
on the request documentation.

UserAsksAboutFilledParameters
The user does not answer the agent, and instead
asks a question about the parameters filled,
or still missing.

UserAsksForHelp
For categorical parameters, the user ask the
agent for help in choosing a value based on
its problem.

UserCorrectValueInvalidValue
The user answers the agent correctly, but also
gives an invalid value for a categorical
parameter not yet filled.

UserInvalidValue For categorical parameters, the user gives
an impossible choice.

UserChangesTopic
The user does not answer the agent’s
question and change the topic of
conversation instead.

UserSkipsUnskipable For required parameters, the user asks to skip it.

UserIncorrectDate For date/time parameters, the user gives
an invalid date.

UserIncorrectWeb For technical parameters such as
url/email, the user gives a invalid value.

35

Technical report

E.4 Choosing the teacher model

The Teacher agent uses a Llama-405B-Instruct model12 that is carefully prompted to perform the form-
filling task according to all our metrics (Section 5.2). We experimented with various language models such
as GPT4o, and Mistral-Large, but according to human evaluation, Llama 405B was on par or better than
other models. We explored two different prompting techniques. The first (referred to as ‘long-node’ in
Table 7) consists of crafting one long and detailed prompt explaining how the agent should make a thought
plan and answer the user (single node TapeAgent). The other prompting technique explored (referred to as
‘multi-node’ in Table 7) consists in decomposing the task into multiple smaller subtasks, each handled by a
different node. The multi-node agent is first tasked to identify potential parameter values provided by the
last user message, then it is prompted to verify whether the provided values are correct or not, eventually,
the agent is prompted to note valid information, refuse invalid information, and ask the user for the next
parameter to fill. We generated agent messages as a continuation to 1016 unfinished conversations where
the last user message behaved according to specific behaviors and sent these messages to human labelers.
Results show that the multi-node approach yields better performance overall, so we decided to keep this
prompting strategy as our final Teacher agent in Section 5.3.

Table 7: Evaluation of the Teacher agent with two prompting methods (long-node & multi-node) across all user
behaviors on 1016 test domain conversations.

GREADTH metric
Author of last user message Count long-node multi-node
UserInitMessageAmazing 46 60.87% 86.96%
UserInitMessageShort 48 87.50% 89.58%
UserInitMessageAsk 46 91.30% 84.78%
UserBadInitMessage 46 97.83% 100.00%
UserHappyPath 186 72.58% 89.25%
UserMultislotInstruct 48 68.75% 83.33%
UserMultislotFuture 46 58.70% 76.09%
UserChangesSlot 46 71.74% 82.61%
UserAdjectiveOrPosition 46 58.70% 76.09%
UserSkipsOptional 46 71.74% 71.74%
UserAsksAboutDocs 46 84.78% 93.48%
UserAsksAboutFilledParameters 48 83.33% 81.25%
UserAsksForHelp 45 40.00% 42.22%
UserCorrectValueInvalidValue 45 62.22% 77.78%
UserInvalidValue 46 63.04% 91.30%
UserChangesTopic 46 76.09% 86.96%
UserSkipsUnskipable 48 87.50% 95.83%
UserIncorrectDate 46 47.83% 19.57%
UserIncorrectWeb 42 16.67% 23.81%
ALL_BEHAVIORS 1016 69.39% 78.54%

12https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct-FP8

36

https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct-FP8

Technical report

E.5 Teacher and Student Tapes

[0] Assistant
Hi, how can I help you?

[1] User
I need to create a digital coupon for my online store.

[2] Action: ResolveFunction
query: create a digital coupon

[3] Observation: FunctionCandidates
candidates:
- function: Customer Complaint Resolution
 short_description: '...'
- function: Digital Coupon Creation
 short_description: '...'
- function: Employee Access Request
 short_description: '...'
- function: Employee Transfer Request
 short_description: '...'
- function: Inventory Replenishment Request
 short_description: '...'
- function: New Product Request
 short_description: '...'
- function: Price Change Request
 short_description: '...'
- function: Product Return Request
 short_description: '...'
- function: Store Maintenance Request
 short_description: '...'
- function: Vendor Application
 short_description: '...'

[4] Action: InspectFunction
function: Digital Coupon Creation

[5] Observation: FunctionSchema
name: Digital Coupon Creation
description: Request the creation of a digital coupon
for a specific product or promotion,
 including details on the coupon terms, expiration
date, and target audience. This
 function requires the product ID, promot...
parameters:
 type: object
 properties:
 product_id:
 type: integer
 promotion_type:
 type: string
 enum:
 - percentage off
 - fixed amount off
 - buy one get one free
 coupon_value:
 type: number
 expiration_date:
 type: string
 format: date
 target_audience:
 type: string
 enum:
 - all customers
 - loyalty program members
 start_date:
 type: string
 format: date

[6] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters: {}

[7] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters: {}

[8] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- product_id

[9] Assistant
To create a digital coupon, I'll need some information.
Please enter the product ID for which you want to
create the digital coupon.

[10] User
The product ID is 8542.

[11] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters:
 product_id: 8542

[12] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters:
 product_id:
 value: 8542
 status: valid
 explanation: ''

[13] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 product_id: 8542
skip: []

[14] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[15] Assistant
Noted, the product ID is set to 8542. Please enter the
promotion type. The options are percentage off, fixed
amount off, or buy one get one free.

[16] User
I want two promotion types: percentage off and buy one
get one free.

[17] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters: {}

[18] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters:
 promotion_type:
 value: percentage off and buy one get one free
 status: invalid
 explanation: Only one promotion type can be
selected.

[19] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: promotion_type
parameter_value: percentage off and buy one get one
free

[20] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[21] Assistant
The provided promotion type 'percentage off and buy one
get one free' is invalid. You can only choose one
promotion type. Please enter the promotion type for
your digital coupon. The options are percentage off,
fixed amount off, or buy one get one free.

[22] User
How many parameters have I filled so far?

[23] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters: {}

[24] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters: {}

[25] Thought: AnswerFromFunctionSchema
function: Digital Coupon Creation

[26] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: promotion_type
parameter_value: null

[27] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[28] Assistant
You have filled 1 parameter so far, which is product
ID. However, the provided promotion type is still
invalid. You can only choose one promotion type. Please
enter the promotion type for your digital coupon. The
options are percentage off, fixed amount off, or buy
one get one free.

[29] User
Free shipping

[30] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters: {}

[31] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters:
 promotion_type:
 value: Free shipping
 status: invalid
 explanation: The value should be one of 'percentage
off', 'fixed amount off',
 or 'buy one get one free'.

[32] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: promotion_type
parameter_value: Free shipping

[33] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[34] Assistant
No new parameters were filled. The provided promotion
type, 'Free shipping', is invalid. You can only choose
one of the following options: percentage off, fixed
amount off, or buy one get one free. Please enter a
valid promotion type.

[35] User
I choose percentage off. The target audience is
subscribers from Europe.

[36] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters:
 promotion_type: percentage off

[37] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters:
 promotion_type:
 value: percentage off
 status: valid
 explanation: ''
 target_audience:
 value: subscribers from Europe
 status: invalid
 explanation: The value should be either 'all
customers' or 'loyalty program members'.

[38] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 promotion_type: percentage off
skip: []

[39] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: target_audience
parameter_value: subscribers from Europe

[40] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- target_audience

[41] Assistant
Noted, the promotion type is set to percentage off.
However, the target audience 'subscribers from Europe'
is invalid. Please enter a valid target audience for
your digital coupon. The options are all customers or
loyalty program members.

[42] User
I want the target audience to be all customers, the
discount should be 20 percent, and the coupon should
start on August 1st.

[43] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters:
 coupon_value: 20 percent
 target_audience: all customers
 start_date: August 1st

[44] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters:
 coupon_value:
 value: 20
 status: valid
 explanation: '''20 percent'' implies the value is
20.'
 target_audience:
 value: all customers
 status: valid
 explanation: ''
 start_date:
 value: '2024-08-01'
 status: valid
 explanation: Assuming the year is 2024.

[45] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 coupon_value: 20
 target_audience: all customers
 start_date: '2024-08-01'
skip: []

[46] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- expiration_date

[47] Assistant
Noted, the target audience is set to all customers, the
coupon value is set to 20, and the start date is set to
August 1st, 2024. Please enter the expiration date for
your digital coupon.

[48] User
I want the expiration date to be August 31st, 2024.

[49] Thought: GatherValuesThought
function: Digital Coupon Creation
parameters:
 expiration_date: August 31st, 2024

[50] Thought: VerifyValuesThought
function: Digital Coupon Creation
parameters:
 expiration_date:
 value: '2024-08-31'
 status: valid
 explanation: The date was converted to the required
format.

[51] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 expiration_date: '2024-08-31'
skip: []

[52] Thought: RequestFunctionCallConfirmation
function: Digital Coupon Creation

[53] Assistant
I updated the expiration date of the digital coupon to
August 31, 2024.

Please review the information you provided. If you want
to proceed, please approve.

Assigned parameters:
- product_id: 8542
- promotion_type: percentage off
- coupon_value: 20
- target_audience: all customers
- start_date: 2024-08-01
- expiration_date: 2024-08-31

[54] User
Approve.

[55] Action: CallFunction
function: Digital Coupon Creation

Agent

UserInitMessageShort.main_node

Agent.intent_discovery_node_b

Environment

Agent.intent_discovery_node_b

Environment

Agent.gather_values_node

Agent.verify_values_node

Agent.request_node

Agent.generate_node

UserHappyPath.main_node

Agent.gather_values_node

Agent.verify_values_node

Agent.update_and_plan_node

Agent.request_node

Agent.generate_node

UserInvliadValue.main_node

Agent.gather_values_node

Agent.verify_values_node

Agent.request_node

Agent.generate_node

UserAsksAboutFilledParameters.main_node

Agent.gather_values_node

Agent.verify_values_node

Agent.request_node

Agent.generate_node

UserInvalidValue.main_node

Agent.gather_values_node

Agent.verify_values_node

Agent.request_node

Agent.generate_node

UserCorrectValueInvalidValue.main_node

Agent.gather_values_node

Agent.verify_values_node

Agent.update_and_plan_node

Agent.request_node

Agent.generate_node

UserMultiSlotInstruct.main_node

Agent.gather_values_node

Agent.verify_values_node

Agent.update_and_plan_node

Agent.request_node

Agent.generate_node

UserHappyPath.main_node

Agent.gather_values_node

Agent.verify_values_node

Agent.update_and_plan_node

Agent.request_node

Agent.Generate

UserHappyPath.main_node

Agent

Figure 11: Sample Tape between the Teacher agent and User agents. The user is requesting the creation of
a digital coupon for their online store. Steps are color-coded: purple for internal agent thoughts, blue for actions,
and green for observations. The step’s author is indicated in grey using the “Agent.node” format. User agent names
are described in Appendix E.3.

37

Technical report

[0] Assistant
Hi, how can I help you?

[1] User
I need to create a digital coupon for my online store.

[2] Action: ResolveFunction
query: create a digital coupon

[3] Observation: FunctionCandidates
candidates:
- function: Customer Complaint Resolution
 short_description: '...'
- function: Digital Coupon Creation
 short_description: '...'
- function: Employee Access Request
 short_description: '...'
- function: Employee Transfer Request
 short_description: '...'
- function: Inventory Replenishment Request
 short_description: '...'
- function: New Product Request
 short_description: '...'
- function: Price Change Request
 short_description: '...'
- function: Product Return Request
 short_description: '...'
- function: Store Maintenance Request
 short_description: '...'
- function: Vendor Application
 short_description: '...'

[4] Action: InspectFunction
function: Digital Coupon Creation

[5] Observation: FunctionSchema
name: Digital Coupon Creation
description: Request the creation of a digital coupon
for a specific product or promotion,
 including details on the coupon terms, expiration
date, and target audience. This
 function requires the product ID, promot...
parameters:
 type: object
 properties:
 product_id:
 type: integer
 promotion_type:
 type: string
 enum:
 - percentage off
 - fixed amount off
 - buy one get one free
 coupon_value:
 type: number
 expiration_date:
 type: string
 format: date
 target_audience:
 type: string
 enum:
 - all customers
 - loyalty program members
 start_date:
 type: string
 format: date

[6] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- product_id

[7] Assistant
To create a digital coupon, I'll need some information.
Please enter the product ID for which you want to
create the digital coupon.

[8] User
The product ID is 8542.

[9] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 product_id: 8542
skip: []

[10] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[11] Assistant
Noted, the product ID is set to 8542. Please enter the
promotion type. The options are percentage off, fixed
amount off, or buy one get one free.

[12] User
I want two promotion types: percentage off and buy one
get one free.

[13] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: promotion_type
parameter_value: percentage off and buy one get one
free

[14] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[15] Assistant
The provided promotion type 'percentage off and buy one
get one free' is invalid. You can only choose one
promotion type. Please enter the promotion type for
your digital coupon. The options are percentage off,
fixed amount off, or buy one get one free.

[16] User
How many parameters have I filled so far?

[17] Thought: AnswerFromFunctionSchema
function: Digital Coupon Creation

[18] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: promotion_type
parameter_value: null

[19] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[20] Assistant
You have filled 1 parameter so far, which is product
ID. However, the provided promotion type is still
invalid. You can only choose one promotion type. Please
enter the promotion type for your digital coupon. The
options are percentage off, fixed amount off, or buy
one get one free.

[21] User
Free shipping

[22] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: promotion_type
parameter_value: Free shipping

[23] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- promotion_type

[24] Assistant
No new parameters were filled. The provided promotion
type, 'Free shipping', is invalid. You can only choose
one of the following options: percentage off, fixed
amount off, or buy one get one free. Please enter a
valid promotion type.

[25] User
I choose percentage off. The target audience is
subscribers from Europe.

[26] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 promotion_type: percentage off
skip: []

[27] Thought: RefuseInvalidFunctionParameterValue
function: Digital Coupon Creation
parameter: target_audience
parameter_value: subscribers from Europe

[28] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- target_audience

[29] Assistant
Noted, the promotion type is set to percentage off.
However, the target audience 'subscribers from Europe'
is invalid. Please enter a valid target audience for
your digital coupon. The options are all customers or
loyalty program members.

[30] User
I want the target audience to be all customers, the
discount should be 20 percent, and the coupon should
start on August 1st.

[31] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 coupon_value: 20
 target_audience: all customers
 start_date: '2024-08-01'
skip: []

[32] Thought: RequestFunctionParameters
function: Digital Coupon Creation
parameters:
- expiration_date

[33] Assistant
Noted, the target audience is set to all customers, the
coupon value is set to 20, and the start date is set to
August 1st, 2024. Please enter the expiration date for
your digital coupon.

[34] User
I want the expiration date to be August 31st, 2024.

[35] Thought: UpdateFunctionParameters
function: Digital Coupon Creation
assign:
 expiration_date: '2024-08-31'
skip: []

[36] Thought: RequestFunctionCallConfirmation
function: Digital Coupon Creation

[37] Assistant
I updated the expiration date of the digital coupon to
August 31, 2024.

Please review the information you provided. If you want
to proceed, please approve.

Assigned parameters:
- product_id: 8542
- promotion_type: percentage off
- coupon_value: 20
- target_audience: all customers
- start_date: 2024-08-01
- expiration_date: 2024-08-31

[38] User
Approve.

[39] Action: CallFunction
function: Digital Coupon Creation

Agent

UserInitMessageShort.main_node

Agent.intent_discovery_node_b

Environment

Agent.intent_discovery_node_b

Environment

UserHappyPath.main_node

Agent.main_node

UserInvalidValue.main_node

UserAsksAboutFilledParameters.main_node

UserInvalidValue.main_node

UserCorrectValueInvalidValue.main_node

Agent.main_node

UserMultiSlotInstruct.main_node

Agent.main_node

UserHappyPath.main_node

Agent.main_node

UserHappyPath.main_node

Agent

Figure 12: Sample tape between the Student agent and User agents. The user is requesting the creation of a
digital coupon for their online store. Steps are color-coded: purple for internal agent thoughts, blue for actions, and
green for observations. The step’s author is indicated in grey using the “Agent.node” format. User agent names are
described in Appendix E.3.

38

	Introduction
	TapeAgents: foundations
	Nodes and Steps
	Nodes That Can Make Training Data

	Agents
	Tape Views
	Optimizable Agents

	Environment
	Orchestration
	Resumption and Replay

	Tape Metadata and LLM Call Database

	TapeAgents: tooling
	Low-code Mini-Frameworks
	Tooling

	Examples
	Financial Analyst and Their Web Search Helper
	Open-domain Question Answering and Web Browsing With Monolithic Agents
	Data Science With a Team of Agents
	Finetuning a Cheap Math Agent
	Prompt-Tuning for Agentic RAG

	Case Study: Building a Cost-Effective Enterprise Form-Filling Assistant
	Problem Setting
	Evaluation Criteria: GREADTH Experience
	Design of a Form Filling TapeAgent
	Experiments

	Related Work
	Detailed comparison with LangGraph, AutoGen, DSPy
	Observability Platforms vs TapeAgents

	Discussion and Future Work
	Immediate Next Steps
	Agent as an Optimizable Workflow
	Synthetic Data Generation with Worlds of TapeAgents

	Multi-Agent Code Example
	Agentic RAG Code Examples
	Agent Tree and Tape
	Tape Tools
	GREADTH Form Filler
	Virtual Companies Prompts
	List of Form-Filler Agent Thoughts and Actions
	User Agents
	Choosing the teacher model
	Teacher and Student Tapes

